12.010 Computational Methods of Scientific Programming

Lecturers
Thomas A Herring
Chris Hill
Mathematica

• Look in more detail at some of the programming features in Mathematica
• There are many of these features and in all Mathematica expressions there are Function names and “short-hand” symbols
• The + usage is actually a function Plus, * is Times
• Use of FullForm shows full form of expressions
• Examples in http://geoweb.mit.edu/~tah/12.010/12.010.Lec13.nb
Subroutines (declaration)

name[v1_Type, …] := Module[{local variables}, body]

Type is optional for the arguments (passed by value)

• Invoked with
 name[same list of variable types]

• Example:
 sub1[i_] := Module[{s}, s = i + i^2 + i^3; Sqrt[s]]

In main program or another subroutine/function:
 sum = sub1[j]

Note: Names of arguments do not need to match those used to declare the function, just the types (if declared) needs to match, otherwise the function is not defined.*
Functions: Comparison

Fortran
Real*8 function func(list of variables)

- Invoked with

 Result = func(same list of variable types)

- Example

 Real*8 function eval(i,value)
 Integer*4 i
 Real*8 value
 eval = i*value

 In main program or subroutine or function

 Real*8 result, eval
 Integer*4 j
 Real*8 sum
 Result = eval(j,sum)

Mathematica
func[list of variables]

- Invoked with

 result = func[same list of variables]

- Example

 eval[i_,value_] := i*value
 OR
 eval[i_Integer,value_Real] := i*value

 In main program or subroutine or function

 result = eval[j,sum]
Functions 02

- Functions can return any of the variable types
- The function name is a symbol
- The function must always appear with the same name, but other names can be defined in desired.
Intrinsic functions

• These functions are embedded in the language and often go by "generic names." Mathematica has MANY of these (check out the Help under "Built in Functions")!

• Examples include Sin, Cos, Tan, ArcTan. Precisely which functions are available are machine independent.

• If a function is not available: function called is returned unchanged (i.e. function[x])
Flow control

• If statement form:
 If[condition, t, f] gives t if condition evaluates to True, and f if it evaluates to False.
 If[condition, t, f, u] gives u if condition evaluates to neither True nor False.
• The standard conditions tests are ==, !=, <, <=, >, >=
• Multiple test are && (and) || (or)
• It also possible combine:
 If[7 > 6 > 5, ..] rather than if[7 > 6 && 6 > 5, …]
• Which allows a range of actions:
 Which[test1, value1, test2, value2, test2, value2]
• Switch allows action based on result of expression:
 Switch[expr, form1, value1, form2, value2]
Loop structures

- **Do structure**: Most general structure

 \[
 \text{Do}[\text{expr}, \{i, \text{imin}, \text{imax}, \text{di}\}, \{j, \text{jmin}, \text{jmax}, \text{dj}\}, \ldots]
 \]

 This would loop through values of \(j\) from \(\text{jmin}\) to \(\text{jmax}\) in increments of \(\text{dj}\), for each value of \(i\) which would loop from \(\text{imin}\) to \(\text{imax}\) in increment of \(\text{di}\).

- If the increment is not given 1 is assumed, if \(\text{imax}\) is not given, then loops from 1 to \(\text{imin}\). If only 1 argument is given, \(\text{expr}\) is evaluated that many times.

- **While**: \([\text{test, body}]\) executes code in body (statements are separated by ;) while ever test is true.

 Return[\text{val}] can be used to return a value from the body code; Break[] can be used to exit body

- **For**: \([\text{start, test, incr, body}]\) executes start, then repeatedly evaluates body and incr until test fails to give \text{True}

- Mathematica does have a Goto[\text{tag}] statement using Label[\text{tag}]
Functions

• Function[body] or body& is a pure function. The formal parameters are # (or #1), #2, etc.
• Function[x, body] is a pure function with a single formal parameter x. Body can have multiple statements separated by ;
• Function[{x1,x2,… }, body] is a pure function with a list of formal parameters.
• If the body is more than one statement, normally there would be a Return[..] call to set the quantity returned from the call.
• Map[f, expr] or f @ expr applies f to each element on the first level in expr.
• Apply[f, expr] or f @@ expr replaces the head of expr by f. This is basically a way of changing what something is in Mathematica e.g., if expr is a list {...}, it can be changed to Times (multiply)
Pattern Matching

• _ or Blank[] is a pattern object that can stand for any Mathematica expression.
• _h or Blank[h] can stand for any expression with head h. We used this in an earlier lecture to make x_Integer for an integer argument.
• __h or BlankSequence[h] can stand for any sequence of one or more expressions, all of which have head h.
• g[x_, y__] := x + y; g[a, b, c] yield a+b+c
• Replace and Rules: -> (arrow on Palette) applies a rule for to convert lhs to rhs, /. is the replace all e.g. 1 + x /. x -> a yields 1+a (same as ReplaceAll[1 + x, x -> a])
• There are many more forms of rules and replacements that are given in the Pattern Matching and Rule applications in the Programming section of the Mathematica help.
Format types

• Mathematica offers many different types of ways to display results and convert to different formats
• These are given in the Format Types under Input Output sections of the Built in Functions
• Some examples are TableForm, MatrixForm, TreeForm
• \(\text{N}[\text{expr}] \) gives the numerical value of \(\text{expr} \).
• \(\text{N}[\text{expr}, n] \) attempts to give a result with \(n \)-digit precision.
Files and directories

- Directory[] - give your current working directory
- SetDirectory["dir"] - set your current working directory
- FileNames[] - list the files in your current working directory
- FileNames["form"] - list the files whose names match a certain form
- <<name - read in a file with the specified name (Get)
- <<context` - read in a file corresponding to the specified context
- CopyFile["file1","file2"] - copies file1 to file2
- DeleteFile["file1"] - deletes the file.
- Input["prompt"] is used to read information from the keyboard
Graphics

• Mathematica supports a variety of graphics plots through its basic plot command.
• Simple plots can be modified with options given in the plot command.
• Mathematica 6.0 and above has a new Manipulate command.

Syntax of command: The variable a here is the one that can be manipulated between values of 0 and 2.
\[
\text{Manipulate[Plot[Sin[x (1 + a x)], \{x, 0, 6\}, \{a, 0, 2\}]}
\]
Final Comments

- Users of Mathematica need to understand the basics of the syntax of the program. The online help however provides the details of the capabilities of the program.

- Built-in Functions is grouped by:
 - Numerical Computation
 - Algebraic Computation
 - Mathematical Functions
 - Lists and Matrices
 - Graphics and Sounds

- Program development should be knowing what you want to do and then finding the Functions that, in combination, will do the task.

- With Notebooks, you can keep track and comment on the way the program works.

- Homework #4 will be due Thursday Nov 17, 2011.