12.010 Computational Methods of Scientific Programming

Matlab Lecture 1
Lecturers
Thomas A Herring
Chris Hill
Summary of Today’s class

• We will look at Matlab:
 – History
 – Getting help
 – Variable definitions and usage
 – Math operators
 – Control statements: Syntax is available through the online help
 – M-files: Script and function types
 • Variable number of input and output arguments

• Our approach here will be to focus on some specific problems using Matlab for analysis and for building Graphical User Interfaces (GUI) and treating graphics as objects.
MATLAB (Matrix Laboratory)

• History
 – MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects.
 – First version was released 1984.
 – Current version is version 7 (Versions come in releases; currently Release 2010a/b, 7.10). (command ver gives version)
 – Interactive system whose basic data element is an array that does not require dimensioning
 – UNIX, PC and Mac versions. Similar but differences.
MATLAB:

• All commands are executable although there is the equivalent to dimensioning. In general arrays in MATLAB are not fixed dimensions.
• Syntax is flexible but there are specific set of separators.
• Basic Structure:
 – MATLAB commands are executed in the command window called the base workspace (>> prompt)
 – MATLAB code can be put in M-files: Two types
 • Script type which simply executes the code in the M-file
 • Function type which executes codes in a new workspace. Generally variables in the new workspace are not available in the base workspace or other workspaces.
Getting help

• Matlab has extensive help available both locally based and through the web.
• After release 13 there is a help menu in the command window.
• Help falls into two types:
 – Help on specific commands and their usage
 – Help by topic area which is useful when looking for generic capabilities of Matlab
• Matlab also comes with guides and there are third-party books such as “Mastering Matlab X”
Basic Structure 02

- Variable types
 - Early versions of matlab had variables that are double precision, strings cells {}, or structures.
 - After Version 6, other variable types introduced specifically single precision and integer forms can be used (saves memory space) (help datatypes)
 - Complex variables are used as needed (use *i or *j to set complex part)
 - Variables can be defined locally in current workspace or they can be global.
 - To be global must be defined that way in both base workspace and M-files
 - who and whos are used determine current workspace variables
 - Names are case sensitive, no spaces, start with letter and may contain numbers and _
 - workspace command is GUI management tool (now built into Desktop Layout).
Basic Structure 03

- I/O: File I/O is similar to C
 - `fopen`, `fclose`, `fread` (binary), `fwrite` (binary), `fscanf` (formatted read), `fprintf` (format write), `fgetl` (read line), `fgets` (read line keep new line character), `sscanf` (string read), `sprintf` (string write)
 - `save` and `load` save and load workspace.

- Math symbols: `+`, `-`, `*`, `/`, `\`, `^` (`\` is left divide)

- When matrices are used the symbols are applied to the matrices.
- When symbol preceded by `. Array elements are operated on pair at a time.
 - `'` means transpose array or matrix

- http://geoweb.mit.edu/~tah/12.010/Matlab/Lec01_01.m and http://geoweb.mit.edu/~tah/12.010/Matlab/Lec01_02.m are examples
Basic Structure 04

– Control
 • *if* statement (various forms)
 • *for* statement (looping control, various forms (similar to do)
 • *while* statement (similar to do while)
 • *No goto* statement!
 • *break* exists from *for* and *while* loops
 • *switch case otherwise end* combination
 • *try catch end* combination

– Termination
 • *end* is used to end control statements above
 • *return* is used in functions in the same way as Fortran.
M-files: Script and Function types

– Communication with functions and M-files
 • Script M-files:
 – Do not accept input or output arguments
 – Operate on data in workspace
 – Useful for automating a series of steps
 • Function M-files
 – Accept input arguments and return outputs
 – Internal variables are local to the function by default, but can be declared global
 – Useful for extending language
Syntax

• Flexible layout with certain characters have specific uses.
• % is the comment symbol. Everything after % is ignored
• … (3 dots) is the line continuation symbol. Must be used at a natural break in commands
• , used to separate commands, with result printed
• ; used to separate commands with result not printed
• [] enclose arrays and matrices, {} enclose sets (difference is multi-dimensional arrays need to be all of the same type and size)
• : is the range selector for from start:increment:end, if only one : increment is 1, if no numeric values, range for matrix elements.
Multidimensional arrays

• Matlab works naturally with 1 and 2 dimensional arrays but more than 2 dimensions can be used.
• They can be constructed a number of different ways
 – By extension: \(a = \begin{bmatrix} 5 & 7 & 8 \\ 0 & 1 & 9 \\ 4 & 3 & 6 \end{bmatrix} \)
 \(a(:,:,2) = \begin{bmatrix} 1 & 0 & 4 \\ 3 & 5 & 6 \\ 9 & 8 & 7 \end{bmatrix} \)
 – Scalar extension (Set “plane” 3 to 5)
 \(a(:,:,3) = 5 \)
 – Use of functions \texttt{ones}, \texttt{zeros}, \texttt{randn}
 \(b = \texttt{zeros}(3,3,2) \)
 – \texttt{cat} function, \texttt{cat(ndim, arrays, ...)} where ndim is the dimension to be concatenated in.
Multidimensional arrays 02

• `reshape` function allows redefinition of array shape e.g.,
  ```
  a = [1:18]; reshape(a,[ 3 3 2 ])
  ```
• `squeeze` removes dimensions that are only 1 element
• `permute` allows array dimensions to be re-ordered.

• Functions that operate on elements of arrays work with multidimensional arrays but matrix type functions do not work unless a suitable 2-D array is passed
• Functions that operate on vectors use the first nonsingleton index
Summary of Introduction to Matlab

• Looked at the basic features of Matlab:
 – Getting help
 – Variable definitions and usage
 – Math operators
 – Control statements: Syntax is available through the online help
 – M-files: Script and function types
 • Variable number of input and output arguments

• Class Project Descriptions and groups of 1 or 2 people are due Thursday November 17.
12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.