12.491 | Fall 2007 | Graduate

Biogeochemistry of Sulfur

Readings

Origin of Isotope Fractionation and Biogeochemistry of Sulfur Isotopes

Schauble, E. A. “Applying Stable Isotope Fractionation Theory to New Systems.” Reviews in Mineralogy and Geochemistry 55 (2004): 65-111.

Canfield, D. E. “Biogeochemistry of Sulfur Isotopes.” Reviews in Mineralogy and Geochemistry 43 (2001): 609-636.

Sulfur Isotope Fractionation in Biological Systems

Mangalo, M., R. U. Meckenstock, W. Stichler, and F. Einsiedl. “Stable Isotope Fractionation During Bacterial Sulfate Reduction is Controlled by Reoxidation of Intermediates.” Geochimica et Cosmochimica Acta 71 (2007): 4161-4171.

Johnston, D. T., J. Farquhar, and D. E. Canfield. “Sulfur Isotope Insights in to Microbial Sulfate Reduction: When Microbes Meet Models.” Geochimica et Cosmochimica Acta 71 (2007): 3929-3947.

Canfield, D. E., C. A. Olesen, and R. P. Cox. “Temperature and its Control of Isotope Fractionation by a Sulfate-reducing Bacterium.” Geochimica et Cosmochimica Acta 70 (2006): 548-561.

Bottcher, M. E., and B. Thamdrup. “Anaerobic Sulfide Oxidation and Stable Isotope Fractionation Associated with Bacterial Sulfur Disproportionation in the Presence of MnO2.” Geochimica et Cosmochimica Acta 65 (2001): 1573-1581.

Turchyn, A. V., and D. P. Schrag. “Oxygen Isotope Constraints on the Sulfur Cycle Over the Past 10 Million Years.” Science 303 (2004): 2004-2007.

Wortmann, U. G., B. Chernyavsky, S. M. Bernasconi, B. Brunner, M. E. Bottcher, and P. K. Swart. “Oxygen Isotope Biogeochemistry of Pore Water Sulfate in the Deep Biosphere: Dominance of Isotope Exchange Reactions with Ambient Water During Microbial Sulfate Reduction (ODP Site 1130).” Geochimica et Cosmochimica Acta 71 (2007): 4221-4232.

Turchyn, A. V., O. Sivan, and D. P. Schrag. “Oxygen Isotopic Composition of Sulfate in Deep Sea Pore Fluid: Evidence for Rapid Sulfur Cycling.” Geobiology 4 (2006): 191-201.

Sulfidic Oceans: Evidence and Implications

Canfield, D. E. “A New Model for Proterozoic Ocean Chemistry.” Nature 396 (1998): 450-453.

Logan, G. A., J. M. Hayes, G. B. Hieshima, and R. E. Summons. “Terminal Proterozoic Reorganization of Biogeochemical Cycles.” Nature 376 (1995): 53-56.

Riccardi, A. L., M. A. Arthur, and L. R. Kump. “Sulfur Isotopic Evidence for Chemocline Upward Excursions During the End-Permian Mass Extinction.” Geochimica Et Cosmochimica Acta 70 (2006): 5740-5752.

Supplementary Readings

Riccardi, A., L. R. Kump, M. A. Arthur, and S. D’Hondt. “Carbon Isotopic Evidence for Chemocline Upward Excursions During the End-Permian Event.” Palaeogeography Palaeoclimatology Palaeoecology 248 (2007): 73-81.

Hotinski, R. M., K. L. Bice, L. R. Kump, R. G. Najjar, and M. A. Arthur. “Ocean Stagnation and End-Permian Anoxia.” Geology 29 (2001): 7-10.

Hotinski, R. M., L. R. Kump, and K. L. Bice. Comment on “Could the Late Permian Deep Ocean have been Anoxic?’’ by R. Zhang et al. Paleoceanography 17 (2002).

Kump, L. R., A. Pavlov, and M. A. Arthur. “Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia.” Geology 33 (2005): 397-400.

Anbar, A. D., G. L. Arnold, T. W. Lyons, and J. Barling. Response to comment on “Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans.” Science 309 (2005).

Anbar, A. D., and A. H. Knoll. “Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?” Science 297 (2002): 1137-1142.

Arnold, G. L., A. D. Anbar, J. Barling, and T. W. Lyons. “Molybdenum Isotope Evidence for Widespread Anoxia in Mid-proterozoic Oceans.” Science 304 (2004): 87-90.

Proterozoic Sulfur Cycle

Johnston, D. T., B. A. Wing, J. Farquhar, A. J. Kaufman, H. Strauss, T. W. Lyons, L. C. Kah, and D. E. Canfield. “Active Microbial Sulfur Disproportionation in the Mesoproterozoic.” Science 310 (2005): 1477-1479.

Johnston, D. T., S. W. Poulton, P. W. Fralick, B. A. Wing, D. E. Canfield, and J. Farquhar. “Evolution of the Oceanic Sulfur Cycle at the End of the Paleoproterozoic.” Geochimica et Cosmochimica Acta 70 (2006): 5723-5739.

History and The Latest of Global Sulfur Cycle Models

Holser, W. T., and I. R. Kaplan. “Isotope Geochemistry of Sedimentary Sulfates.” Chemical Geology 1 (1966): 93-135.

Garrels, R. M., and A. Lerman. “Phanerozoic Cycles of Sedimentary Carbon and Sulfur.” Proceedings of the National Academy of Sciences of the United States of America 78 (1981): 4652-4656.

Canfield, D. E. “The Evolution of the Earth Surface Sulfur Reservoir.” Am J Sci 304 (2004): 839-861.

Kurtz, A. C., L. R. Kump, M. A. Arthur, J. C. Zachos, and A. Paytan. “Early Cenozoic Decoupling of the Global Carbon and Sulfur Cycles.” Paleoceanography 18 (2003).

Berner, R. A. “GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 and CO2.” Geochimica Et Cosmochimica Acta 70 (2006): 5653-5664.

Neoproterozoic Rise of Oxygen and Ocean Sulfate

Canfield, D. E., and A. Teske. “Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur-Isotope Studies.” Nature 382 (1996): 127-132.

Kah, L. C., T. W. Lyons, and T. D. Frank. “Low Marine Sulphate and Protracted Oxygenation of the Proterozoic Biosphere.” Nature 431 (2004): 834-838.

Johnston, D. T., B. A. Wing, J. Farquhar, A. J. Kaufman, H. Strauss, T. W. Lyons, L. C. Kah, and D. E. Canfield. “Active Microbial Sulfur Disproportionation in the Mesoproterozoic.” Science 310 (2005): 1477-1479.

Oxygen Isotope Ratios of Sulfate and How They are Used

Turchyn, A. V., and D. P. Schrag. “Oxygen Isotope Constraints on the Sulfur Cycle Over the Past 10 Million Years.” Science 303 (2004): 2004-2007.

Wortmann, U. G., B. Chernyavsky, S. M. Bernasconi, B. Brunner, M. E. Bottcher, and P. K. Swart. “Oxygen Isotope Biogeochemistry of Pore Water Sulfate in the Deep Biosphere: Dominance of Isotope Exchange Reactions with Ambient Water During Microbial Sulfate Reduction (ODP Site 1130).” Geochimica et Cosmochimica Acta 71 (2007): 4221-4232.

Turchyn, A. V., O. Sivan, and D. P. Schrag. “Oxygen Isotopic Composition of Sulfate in Deep Sea Pore Fluid: Evidence for Rapid Sulfur Cycling.” Geobiology 4 (2006): 191-201.

Sulfur Isotope Biosignatures in Ancient Rocks

Ohmoto, H., T. Kakegawa, and D. R. Lowe. “3.4-Billion-Year-Old Biogenic Pyrites from Barberton, South Africa; Sulfur Isotope Evidence.” Science 262 (1993): 555-557.

Shen, Y., R. Buick, and D. E. Canfield. “Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era.” Nature 410 (2001): 77-81.

Sulfur on Mars and Early Earth

Farquhar, J., J. Savarino, T. L. Jackson, and M. H. Thiemens. “Evidence of Atmospheric Sulphur in the Martian Regolith from Sulphur Isotopes in Meteorites.” Nature 404 (2000c): 50-52.

Farquhar, J., H. M. Bao, and M. Thiemens. “Atmospheric Influence of Earth’s Earliest Sulfur Cycle.” Science 289 (2000a): 756-758.

Sulfur In Hydrothermal Systems

Ono, S., W. C. Shanks Iii, O. J. Rouxel, and D. Rumble. “S-33 Constraints on the Seawater Sulfate Contribution in Modern Seafloor Hydrothermal Vent Sulfides.” Geochimica et Cosmochimica Acta 71 (2000c): 1170-1182.

Ohmoto, H., and A. C. Lasaga. “Kinetics of Reactions Between Aqueous Sulfates and Sulfides in Hydrothermal Systems.” Geochimica et Cosmochimica Acta 46 (1982): 1727-1745.

Sulfur and The Deep Biosphere

Bach, W., and K. J. Edwards. “Iron and Sulfide Oxidation Within the Basaltic Ocean Crust: Implications for Chemolithoautotrophic Microbial Biomass Production.” Geochimica Et Cosmochimica Acta 67 (2003): 3871-3887.

D’hondt, S., B. B. Jorgensen, D. J. Miller, A. Batzke, R. Blake, B. A. Cragg, H. Cypionka, G. R. Dickens, T. Ferdelman, K. U. Hinrichs, N. G. Holm, R. Mitterer, A. Spivack, G. Z. Wang, B. Bekins, B. Engelen, K. Ford, G. Gettemy, S. D. Rutherford, H. Sass, C. G. Skilbeck, I. W. Aiello, G. Guerin, C. H. House, F. Inagaki, P. Meister, T. Naehr, S. Niitsuma, R. J. Parkes, A. Schippers, D. C. Smith, A. Teske, J. Wiegel, C. N. Padilla, and J. L. S. Acosta. “Distributions of Microbial Activities in Deep Subseafloor Sediments.” Science 306 (2004): 2216-2221.

Archean Sulfur Cycles

Farquhar, J., J. Savarino, S. Airieau, and M. H. Thiemens. “Observation of Wavelength-Sensitive Mass-Independent Sulfur Isotope Effects During SO2 Photolysis: Implications for the Early Atmosphere.” Journal of Geophysical Research 106 (2001): 1-11.

Farquhar, J., H. M. Bao, and M. Thiemens. “Atmospheric Influence of Earth’s Earliest Sulfur Cycle.” Science 289 (2000a): 756-758.

Ono, S., J. L. Eigenbrode, A. A. Pavlov, P., D. Rumble, J. F. Kasting, and K. H. Freeman. “New Insights in to Archean Sulfur Cycle from Mass-Independent Sulfur Isotope Records from the Hamersley Basin, Australia.” Earth and Planetary Science Letters 213 (2003): 15-30.

Pavlov, A. A., and J. F. Kasting. “Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere.” Astrobiology 2 (2002): 27-41.

Bekker, A., H. D. Holland, P. L. Wang, D. Rumble, H. J. Stein, J. L. Hannah, L. L. Coetzee, and N. J. Beukes. “Dating the Rise of Atmospheric Oxygen.” Nature 427 (2004): 117-20.

Ohmoto, H., Y. Watanabe, H. Ikemi, S. R. Poulson, and B. E. Taylor. “Sulphur Isotope Evidence for an Oxic Archaean Atmosphere.” Nature 442 (2006): 908-911.

Ono, S., N. J. Beukes, D. Rumble, and M. L. Fogel. “Early Evolution of Atmospheric Oxygen from Multiple-Sulfur and Carbon Isotope Records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa.” South African Journal of Geology 109 (2006): 97-108.

Course Info

As Taught In
Fall 2007
Level