14.123 Microeconomics III—Problem Set 1

Muhamet Yildiz

Instructions. You are encouraged to work in groups, but everybody must write their own solution to the problem that is for grade. Good Luck!

(i) (For Grade) There are n individuals. Each individual i has constant absolute risk aversion $\alpha_i > 0$ and an asset that pays X_i where $(X_1, \ldots, X_n) \sim N((\mu_1, \ldots, \mu_n), \Sigma)$.

(a) What are the optimal risk sharing contracts? What is the vector of payoffs from an optimal risk-sharing contract? Characterize the set of the vectors of certainty equivalents from optimal risk sharing contracts.

(b) Answer (a) for $\alpha_1 = \cdots = \alpha_n$, $\mu_1 = \cdots = \mu_n$ and $\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho & \rho \\ \rho & 1 & \cdots & \rho & \rho \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho & \rho & \cdots & 1 & \rho \\ \rho & \rho & \cdots & \rho & 1 \end{pmatrix}$.

How much the society as a whole are willing to pay all of these assets? Assuming that they write a symmetric contract, what is the preference relation of an individual on (σ^2, ρ) pairs? Briefly discuss.

(ii) Exercise 2.1 in lecture notes.

(iii) Consider the set of lotteries (p_x, p_y, p_z) on the set of outcomes $\{x, y, z\}$ where $p_x, p_y,$ and p_z are the probabilities of $x, y,$ and $z,$ respectively.

(a) For each (partial) preference below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if no, show that it cannot come from an expected utility maximizer.)

i. $(0, 1, 0) > (1/8, 6/8, 1/8)$ and $(7/8, 0, 1/8) > (6/8, 1/8, 1/8)$

ii. $(1/4, 1/4, 1/2) > (3/4, 0, 1/4) > (5/6, 1/6, 0) > (1/2, 1/3, 1/6)$

(b) For each family of indifference curves below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if no, show that it cannot come from an expected utility maximizer.)

i. $p_y = c - 2p_x$ (where c varies)

ii. $p_y = c(p_x + 1)$ (where c varies)
iii. \(p_y = c - 2\sqrt{px} \) (where \(c \) varies)

(c) Find a complete and transitive preference relation on the above lotteries that satisfies the independence axiom but cannot have an expected utility representation.

(iv) Alice has \(M \) dollars and has a constant absolute risk aversion \(\alpha \) (i.e. \(u(x) = -e^{-\alpha x} \)) for some \(\alpha > 0 \). With some probability \(\pi \in (0,1) \) she may get sick, in which case she would need to spend \(L \) dollars on her health. There is a health-insurance policy that fully covers her health care expenses in case of sickness and costs \(P \) to her. (If she buys the policy, she needs to pay \(P \) regardless of whether she gets sick.)

(a) Find the set of prices \(P \) that she is willing to pay for the policy. How does the maximum price \(P \) she is willing to pay varies with the parameters \(M, L, \alpha, \) and \(\pi \)?

(b) Suppose now that there is a test \(t \in \{-1, +1\} \) that she can take before she makes her decision on buying the insurance policy. If she takes the test and the test \(t \) is positive, her posterior probability of getting sick jumps to \(\pi^+ > \pi \) and if the test is negative, then her posterior probability of getting sick becomes 0. What is the maximum price \(c \) she is willing to pay in order to take the test? (Take \(P \leq \bar{P} \).)