Instructions. You are encouraged to work in groups, but everybody must write their own solutions. Each question is 33 points. Good Luck!

1. Problem 3 in Problem Set 2.

2. Bob has just retired and has \(w_0 \) dollars. His utility from a consumption stream \((c_0, c_1, \ldots)\) is
\[
\sum_{t=0}^{\infty} \delta^t u(c_t),
\]
where \(u : \mathbb{R} \to \mathbb{R} \) is a von Neumann-Morgenstern utility function with constant relative risk aversion \(\rho > 1 \). For each \(t \), he dies in between periods \(t \) and \(t + 1 \) with probability \(p \), in which case he gets 0 utility.

(a) Take \(n = 1 \), and find the optimal consumption stream \(c^* \) with \(c_0^* + c_1^* \leq w_0 \).
(b) Take \(n = \infty \), and find the optimal consumption stream \(c^* \) with \(c_0^* + c_1^* + \cdots \leq w_0 \).
(c) What would be your answer to part (b) if \(\rho = 1 \)?
(d) Solve part (c), assuming instead that Bob can get \(r_t \) from each dollars saved at \(t \), i.e., \(w \) dollars saved at \(t \) becomes \(wr_t \) dollars at \(t + 1 \), where \((r_t) \) is i.i.d. with \(r_t > 0 \) and \(\delta E[\log r_t] \in (0, 1) \).

3. For any real-valued random variables \(X \) and \(Y \) and any increasing function \(g : \mathbb{R} \to \mathbb{R} \), prove or disprove the following statements.

(a) If \(X \) first-order stochastically dominates \(Y \), then \(g(X) \) first-order stochastically dominates \(g(Y) \).
(b) If \(X \) second-order stochastically dominates \(Y \), then \(g(X) \) second-order stochastically dominates \(g(Y) \).
(c) If \(X \) first-order stochastically dominates \(Y \), then \(X \) first-order stochastically dominates \(\alpha X + (1 - \alpha) Y \) for every \(\alpha \in [0, 1] \).

4. Ann has constant absolute risk aversion \(\alpha > 0 \) and initial wealth \(w \). She can buy shares from two divisible assets that are sold at unit price. One of assets pays a dividend \(X \sim N(2\mu, \sigma^2) \) and the other pays a dividend \(Y \sim N(\mu, \sigma^2) \) where \(X \) and \(Y \) are independently distributed and \(\mu > 1 \). She can buy any amount of shares from each asset, and she can keep some of her initial wealth in cash. Find the optimal portfolio for Ann.