Today: Hashing II
- table resizing
- amortization
- string matching & Karp-Rabin
- rolling hash

Recall:
- hashing with chaining:
 - all possible keys
 - n keys in set DS

- expected cost (insert/delete/search): \(\Theta(1+\alpha) \)
 - assuming simple uniform hashing
 - or universal hashing
 - hash function \(h \) takes \(O(1) \) time

- division method: \(h(k) = k \mod m \)
 - ideally prime

- multiplication method:
 \[h(k) = \lfloor (a \cdot k) \mod 2^w \rceil >> (w-r) \]
 - random \(< 1 \) \(w \) bits
 - \(m = 2^r \)
How large should table be?
- want \(m = \Theta(n) \) at all times
- don't know how large \(n \) will get
- \(m \) too small \(\Rightarrow \) slow; \(m \) too big \(\Rightarrow \) wasteful

Idea: start small (constant)
grow (& shrink) as necessary

Rehashing: to grow or shrink table
hash function must change \((m, r)\)
\(\Rightarrow \) must rebuild hash table from scratch
for item in old table: \(\Rightarrow \) for each slot:
insert into new table
\(\Rightarrow \Theta(n+m) \) time \(= \Theta(n) \) if \(m = \Theta(n) \)

How fast to grow? when \(n \) reaches \(m \), say
- \(m += 1 \)?
 \(\Rightarrow \) rebuild every step
 \(\Rightarrow n \) inserts cost \(\Theta(1+2+\ldots+n)=\Theta(n^2) \)

- \(m *= 2 \)? \(m = \Theta(n) \) still \((r += 1) \)
 \(\Rightarrow \) rebuild at insertion \(2^i \)
 \(\Rightarrow n \) inserts cost \(\Theta(1+2^1+2^2+\ldots+n) \)
 really the next power of 2
 \(= \Theta(n) \)

- a few inserts cost linear time, but \(\Theta(1) \) "on average"
Amortized analysis — common technique in DSs
- like paying rent: $1500/month ≈ $50/day
- operation has amortized cost $T(n)$ if k operations cost $\leq k \cdot T(n)$
- “$T(n)$ amortized” roughly means $T(n)$ “on average”, but averaged over all ops.
- e.g. inserting into a hash table takes $O(1)$ amortized time

Back to hashing: maintain $m = \Theta(n) \Rightarrow \alpha = \Theta(1)$
\Rightarrow support search in $O(1)$ expected time
(assuming simple uniform hashing/universal)

Delete: also $O(1)$ expected as is
- space can get big with respect to n
 - e.g. $n \times$ insert, $n \times$ delete
- solution: when n decreases to $m/4$,
 shrink to half the size
$\Rightarrow O(1)$ amortized cost for both insert & delete
- analysis harder; see CLRS 17.4

Resizable arrays:
- same trick solves Python “list” (array)
 $\Rightarrow \text{list.append & list.pop}$ in $O(1)$ amortized

[Diagram of list with some elements and unused slots]
String matching: given two strings s & t, does s occur as a substring of t?
(and if so, where & how many times?)
e.g. $s = '6.006'$ & $t =$ your entire INBOX ('grep' on UNIX)

Simple algorithm:
any ($s == t[i:i+len(s)]$
 for i in range(len(t) - len(s)))
 = $O(|s|)$ time for each substring comparison
 $\Rightarrow O(|s| \cdot (|t| - |s|))$ time
 $= O(|s| \cdot |t|)$ potentially quadratic

Karp-Rabin algorithm:
- compare $h(s) == h(t[i:i+len(s)])$
- if hash values match, likely so do strings
 - can check $s == t[i:i+len(s)]$
to be sure $\sim \text{cost } O(|s|)$
 - if yes, found match - done
- if no, happened with probability $< \frac{1}{|s|}$
 $\Rightarrow \text{expected cost is } O(1) \text{ per } i$
- need suitable hash function
- expected time = $O(|s| + |t| \cdot \text{cost}(h))$
 - na"ively $h(x)$ costs $|x|$
 - we'll achieve $O(1)$!
 - idea: $t[i:i+len(s)] \approx t[i+1:i+1+len(s)]$
Rolling hash ADT: maintain string \(x \) subject to
- \(r() \): reasonable hash function \(h(x) \)
- \(r.append(c) \): add letter \(c \) to end of \(x \)
- \(r.skip(c) \): remove front letter from \(x \), assuming it is \(c \)

Karp-Rabin application:
for \(c \) in \(s \): \(rs.append(c) \)
for \(c \) in \(t[:len(s)] \): \(rt.append(c) \)
if \(rs() == rt() \): ...
for \(i \) in range(\(\)len\((s) \), \(\)len\((t) \)): \(rt.skip(t[i-len(s)]) \)
\(rt.append(t[i]) \)
if \(rs() == rt() \): ...
+ \(O(\)matches - \(|s|) \) to verify

Data structure: treat string \(x \) as a multidigit number \(u \) in base \(a \)
alphabet size \(\uparrow \) e.g. \(256 \)

- \(r() = u \mod p \) for prime \(p \approx |s| \) or \(|t| \)
 ideally random (division method)
- \(r \) stores \(u \mod p \) & \(|x| \) (really \(|x^d| \)), not \(u \)
 \(\Rightarrow \) smaller & faster to work with
 \(u \mod p \) fits in one machine word
- \(r.append(c) = (u \cdot a + \text{ord}(c)) \mod p \)
 \(= [(u \mod p) \cdot a + \text{ord}(c)] \mod p \)
- \(r.skip(c) = [u - \text{ord}(c) \cdot (a^{\cdot |x| - 1} \mod p)] \mod p \)
 \(= [(u \mod p) - \text{ord}(c) \cdot (a^{\cdot |x| - 1} \mod p)] \mod p \)