Lecture 14: Graphs II: Depth-First Search

Lecture Overview

- Depth-First Search
- Edge Classification
- Cycle Testing
- Topological Sort

Recall:

- **graph search**: explore a graph
 e.g., find a path from start vertex s to a desired vertex

- **adjacency lists**: array Adj of $|V|$ linked lists
 - for each vertex $u \in V$, $\text{Adj}[u]$ stores u’s neighbors, i.e., $\{v \in V \mid (u, v) \in E\}$
 (just outgoing edges if directed)

For example:

```
  a
  |   |
  v   v
  |   |
  b -- c
```

```
  a
  |   |
  v   v
  |   |
  b  c
```

```
  a
  |   |
  v   v
  |   |
  b  c
```

Figure 1: Adjacency Lists

Breadth-first Search (BFS):

Explore level-by-level from s — find shortest paths
Depth-First Search (DFS)

This is like exploring a maze.

![DFS exploration diagram](image)

Figure 2: Depth-First Search Frontier

Depth First Search Algorithm

- follow path until you get stuck
- backtrack along breadcrumbs until reach unexplored neighbor
- recursively explore
- careful not to repeat a vertex

```
parent = {s: None}
DFS-visit (V, Adj, s):
  for v in Adj [s]:
    if v not in parent:
      parent [v] = s
      DFS-visit (V, Adj, v)
DFS (V, Adj)
  parent = {}
  for s in V:
    if s not in parent:
      parent [s] = None
      DFS-visit (V, Adj, s)
```

![DFS algorithm flowchart](image)

Figure 3: Depth-First Search Algorithm

search from start vertex s (only see stuff reachable from s)

explore entire graph (could do same to extend BFS)
Example

Figure 4: Depth-First Traversal

Edge Classification

Figure 5: Edge Classification

• to compute this classification (back or not), mark nodes for duration they are “on the stack”

• only tree and back edges in undirected graph

Analysis

• DFS-visit gets called with a vertex \(s \) only once (because then parent[\(s \)] set)

 \[\Rightarrow \text{time in DFS-visit} = \sum_{s \in V} |\text{Adj}[s]| = O(E) \]

• DFS outer loop adds just \(O(V) \)

 \[\Rightarrow O(V + E) \text{ time (linear time)} \]
Cycle Detection

Graph G has a cycle \iff DFS has a back edge

Proof

(<=) tree edges

\Rightarrow is a cycle

back edge: to tree ancestor

(=>) consider first visit to cycle:

\Rightarrow before visit to v_i finishes,
will visit v_{i+1} (& finish):
will consider edge (v_i, v_{i+1})
\Rightarrow visit v_{i+1} now or already did

\Rightarrow before visit to v_0 finishes,
will visit v_k (& didn’t before)

\Rightarrow before visit to v_k (or v_0) finishes,
will see (v_k, v_0) as back edge

Job scheduling

Given Directed Acyclic Graph (DAG), where vertices represent tasks & edges represent dependencies, order tasks without violating dependencies
Figure 6: Dependence Graph: DFS Finishing Times

Source:
Source = vertex with no incoming edges
= schedulable at beginning (A,G,I)

Attempt:
BFS from each source:
- from A finds A, BH, C, F
- from D finds D, BE, CF ← slow . . . and wrong!
- from G finds G, H
- from I finds I

Topological Sort

Reverse of DFS finishing times (time at which DFS-Visit(v) finishes)

\[
\begin{align*}
\text{DFS-Visit}(v) \\
\cdots \\
\text{order.append}(v) \\
\text{order.reverse()}
\end{align*}
\]
Correctness

For any edge \((u, v)\) — \(u\) ordered before \(v\), i.e., \(v\) finished before \(u\)

\[\text{U} \rightarrow \text{V} \]

- if \(u\) visited before \(v\):
 - before visit to \(u\) finishes, will visit \(v\) \(\text{(via } (u, v) \text{ or otherwise)}\)
 - \(\implies\) \(v\) finishes before \(u\)

- if \(v\) visited before \(u\):
 - graph is acyclic
 - \(\implies\) \(u\) cannot be reached from \(v\)
 - \(\implies\) visit to \(v\) finishes before visiting \(u\)