Lecture 6: Hashing II: Table Doubling, Karp-Rabin

Lecture Overview

- Table Resizing
- Amortization
- String Matching and Karp-Rabin
- Rolling Hash

Readings

CLRS Chapter 17 and 32.2.

Recall:

Hashing with Chaining:

```
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chaining_in_hash_table.png}
\caption{Chaining in a Hash Table}
\end{figure}
```

Multiplication Method:

\[h(k) = [(a \cdot k) \mod 2^w] \gg (w - r) \]

where \(m = \) table size = \(2^r \)
\(w = \) number of bits in machine words
\(a = \) odd integer between \(2^{w-1} \) and \(2^w \)
How Large should Table be?

- want $m = \theta(n)$ at all times
- don’t know how large n will get at creation
- m too small \implies slow; m too big \implies wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)

\implies must rebuild hash table from scratch
for item in old table:
 insert into new table
$\implies \Theta(n + m)$ time = $\Theta(n)$ if $m = \Theta(n)$
How fast to grow?

When n reaches m, say

- $m + = 1$?
 \Rightarrow rebuild every step
 $\Rightarrow n$ inserts cost $\Theta(1 + 2 + \cdots + n) = \Theta(n^2)$

- $m \times = 2$? $m = \Theta(n)$ still $(r+ = 1)$
 \Rightarrow rebuild at insertion 2^i
 $\Rightarrow n$ inserts cost $\Theta(1 + 2 + 4 + 8 + \cdots + n)$ where n is really the next power of 2
 $= \Theta(n)$

- a few inserts cost linear time, but $\Theta(1)$ “on average”.

Amortized Analysis

This is a common technique in data structures - like paying rent: $\$1500$/month $\approx \$50$/day

- operation has amortized cost $T(n)$ if k operations cost $\leq k \cdot T(n)$
- “$T(n)$ amortized” roughly means $T(n)$ “on average”, but averaged over all ops.
- e.g. inserting into a hash table takes $O(1)$ amortized time.

Back to Hashing:

Maintain $m = \Theta(n)$ so also support search in $O(1)$ expected time assuming simple uniform hashing

Delete:

Also $O(1)$ expected time

- space can get big with respect to n e.g. $n \times$ insert, $n \times$ delete

- solution: when n decreases to $m/4$, shrink to half the size $\Rightarrow O(1)$ amortized cost for both insert and delete - analysis is harder; (see CLRS 17.4).

String Matching

Given two strings s and t, does s occur as a substring of t? (and if so, where and how many times?)
E.g. $s = ‘6.006’$ and $t =$ your entire INBOX (‘grep’ on UNIX)
Simple Algorithm:

Any \(s \equiv t[i : i + \text{len}(s)] \) for \(i \) in \(\text{range(\text{len}(t) - \text{len}(s))} \)
- \(O(|s|) \) time for each substring comparison
 \[\Rightarrow O(|s| \cdot (|t| - |s|)) \] time
 \[= O(|s| \cdot |t|) \] potentially quadratic

Karp-Rabin Algorithm:

- Compare \(h(s) \equiv h(t[i : i + \text{len}(s)]) \)
- If hash values match, likely so do strings
 - can check \(s \equiv t[i : i + \text{len}(s)] \) to be sure \(\sim O(|s|) \)
 - if yes, found match — done
 - if no, happened with probability \(\leq \frac{1}{|s|} \)
 \[\Rightarrow \text{expected cost is} \ O(1) \text{ per } i. \]
- need suitable hash function.
- expected time = \(O(|s| + |t| \cdot \text{cost}(h)). \)
 - naively \(h(x) \) costs \(|x| \)
 - we’ll achieve \(O(1)! \)
 - idea: \(t[i : i + \text{len}(s)] \approx t[i + 1 : i + 1 + \text{len}(s)]. \)

Rolling Hash ADT

Maintain string subject to

- \(h() \): reasonable hash function on string
- \(h.\text{append}(c) \): add letter \(c \) to end of string
- \(h.\text{skip}(c) \): remove front letter from string, assuming it is \(c \)
Karp-Rabin Application:

```python
def h(s):
    h = []
    for c in s:
        h.append(c)
    return h

def hs(s, t):
    hs = h(s)
    ht = h(t[:len(s)])
    if hs() == ht():
        ...
```

This first block of code is $O(|s|)$

```python
for i in range(len(s), len(t)):
    ht.skip(t[i-len(s)])
    ht.append(t[i])
    if hs() == ht():
        ...
```

The second block of code is $O(|t|)$

Data Structure:

Treat string as a multidigit number u in base a where a denotes the alphabet size. E.g. 256

- $h() = u \mod p$ for prime $p \approx |s|$ or $|t|$ (division method)
- h stores $u \mod p$ and $|u|$, not u
 - \Rightarrow smaller and faster to work with ($u \mod p$ fits in one machine word)
- $h.append(c): (u \cdot a + \text{ord}(c)) \mod p = [(u \mod p) \cdot a + \text{ord}(c)] \mod p$
- $h.skip(c): [u - \text{ord}(c) \cdot (a^{|u|-1} \mod p)] \mod p$
 - $= [(u \mod p) - \text{ord}(c) \cdot (a^{|u|-1} \mod p)] \mod p$