Lecture 7: Binary Trees II: AVL

Last Time and Today’s Goal

<table>
<thead>
<tr>
<th>Sequence Data Structure</th>
<th>Operations $O(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>Static</td>
</tr>
<tr>
<td>build(X)</td>
<td>get_at(i)</td>
</tr>
<tr>
<td>set_at(i, x)</td>
<td>delete_first()</td>
</tr>
<tr>
<td>Binary Tree</td>
<td>n</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set Data Structure</th>
<th>Operations $O(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>Static</td>
</tr>
<tr>
<td>build(X)</td>
<td>find(k)</td>
</tr>
<tr>
<td>delete(k)</td>
<td>find_max()</td>
</tr>
<tr>
<td>Binary Tree</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$n \log n$</td>
</tr>
</tbody>
</table>

Height Balance

- How to maintain height $h = O(\log n)$ where n is number of nodes in tree?

- A binary tree that maintains $O(\log n)$ height under dynamic operations is called balanced
 - There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)
 - First proposed balancing scheme was the **AVL Tree** (Adelson-Velsky and Landis, 1962)

Rotations

- Need to reduce height of tree without changing its traversal order, so that we represent the same sequence of items

- How to change the structure of a tree, while preserving traversal order? **Rotations!**

```
1     ___<D>__  rotate_right(<D>)  ___<B>___
2   ___<B>__  ___<E>  =>  ___<A>  ___<D>___
3  <A>  ___<C>  / \  <=  / \  <C>  <E>
4  / \  / \  / \  <=  / \  / \  / \  
5 / \ / \ / \  rotate_left(<B>)  / \ / \ / \ 
```

- A rotation relinks $O(1)$ pointers to modify tree structure and maintains traversal order
Rotations Suffice

- **Claim:** $O(n)$ rotations can transform a binary tree to any other with same traversal order.

- **Proof:** Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical chain. Each rotation increases depth of the last node by 1. Depth of last node in final chain is $n - 1$, so at most $n - 1$ rotations are performed. Reverse canonical rotations to reach target tree.

- Can maintain height-balance by using $O(n)$ rotations to fully balance the tree, but slow :(

- We will keep the tree balanced in $O(\log n)$ time per operation!

AVL Trees: Height Balance

- AVL trees maintain **height-balance** (also called the **AVL Property**)
 - A node is **height-balanced** if heights of its left and right subtrees differ by at most 1
 - Let **skew** of a node be the height of its right subtree minus that of its left subtree
 - Then a node is height-balanced if its skew is -1, 0, or 1

- **Claim:** A binary tree with height-balanced nodes has height $h = O(\log n)$ (i.e., $n = 2^{\Omega(h)}$)

- **Proof:** Suffices to show fewest nodes $F(h)$ in any height h tree is $F(h) = 2^{\Omega(h)}$

$$
F(0) = 1, \ F(1) = 2, \ F(h) = 1 + F(h-1) + F(h-2) \geq 2F(h-2) \implies F(h) \geq 2^{h/2}
$$

- Suppose adding or removing leaf from a height-balanced tree results in imbalance
 - Only subtrees of the leaf’s ancestors have changed in height or skew
 - Heights changed by only ± 1, so skews still have magnitude ≤ 2
 - **Idea:** Fix height-balance of ancestors starting from leaf up to the root
 - Repeatedly rebalance lowest ancestor that is not height-balanced, wlog assume skew 2
Local Rebalance: Given binary tree node ``:
- whose skew 2 and
- every other node in ``’s subtree is height-balanced,
- then ``’s subtree can be made height-balanced via one or two rotations
 - (after which ``’s height is the same or one less than before)

Proof:
- Since skew of `` is 2, ``’s right child `<F>` exists
- **Case 1:** skew of `<F>` is 0 or **Case 2:** skew of `<F>` is 1
 * Perform a left rotation on ``

 ![Diagram](attachment://diagram1.png)

 * Let $h = \text{height}(A)$. Then $\text{height}(G) = h + 1$ and $\text{height}(D)$ is $h + 1$ in Case 1, h in Case 2
 * After rotation:
 - the skew of `` is either 1 in Case 1 or 0 in Case 2, so `` is height balanced
 - the skew of `<F>` is -1, so `<F>` is height balanced
 - the height of `` before is $h + 3$, then after is $h + 3$ in Case 1, $h + 2$ in Case 2

- **Case 3:** skew of `<F>` is -1, so the left child `<D>` of `<F>` exists
 * Perform a right rotation on `<F>`, then a left rotation on ``

 ![Diagram](attachment://diagram2.png)

 * Let $h = \text{height}(A)$. Then $\text{height}(G) = h$ while $\text{height}(C)$ and $\text{height}(E)$ are each either h or $h - 1$
 * After rotation:
 - the skew of `` is either 0 or -1, so `` is height balanced
 - the skew of `<F>` is either 0 or 1, so `<F>` is height balanced
 - the skew of `<D>` is 0, so `<D>` is height balanced
 - the height of `` is $h + 3$ before, then after is $h + 2
• **Global Rebalance:** Add or remove a leaf from height-balanced tree \(T \) to produce tree \(T' \). Then \(T' \) can be transformed into a height-balanced tree \(T'' \) using at most \(O(\log n) \) rotations.

• **Proof:**
 - Only ancestors of the affected leaf have different height in \(T' \) than in \(T \)
 - Affected leaf has at most \(h = O(\log n) \) ancestors whose subtrees may have changed
 - Let \(<x> \) be lowest ancestor that is not height-balanced (with skew magnitude 2)
 - If a leaf was added into \(T \):
 * Insertion increases height of \(<x> \), so in Case 2 or 3 of Local Rebalancing
 * Rotation decreases subtree height: balanced after one rotation
 - If a leaf was removed from \(T \):
 * Deletion decreased height of one child of \(<x> \), not \(<x> \), so only imbalance
 * Could decrease height of \(<x> \) by 1; parent of \(<x> \) may now be imbalanced
 * So may have to rebalance every ancestor of \(<x> \), but at most \(h = O(\log n) \) of them

• So can maintain height-balance using only \(O(\log n) \) rotations after insertion/deletion!

• But requires us to evaluate whether possibly \(O(\log n) \) nodes were height-balanced

Computing Height

• How to tell whether node \(<x> \) is height-balanced? Compute heights of subtrees!

• How to compute the height of node \(<x> \)? Naive algorithm:
 - Recursively compute height of the left and right subtrees of \(<x> \)
 - Add 1 to the max of the two heights
 - Runs in \(\Omega(n) \) time, since we recurse on every node :(

• **Idea:** Augment each node with the height of its subtree! (Save for later!)

• Height of \(<x> \) can be computed in \(O(1) \) time from the heights of its children:
 - Look up the stored heights of left and right subtrees in \(O(1) \) time
 - Add 1 to the max of the two heights

• During dynamic operations, we must **maintain** our augmentation as the tree changes shape

• Recompute subtree augmentations at every node whose subtree changes:
 - Update relinked nodes in a rotation operation in \(O(1) \) time (ancestors don’t change)
 - Update all ancestors of an inserted or deleted node in \(O(h) \) time by walking up the tree
Steps to Augment a Binary Tree

- In general, to augment a binary tree with a **subtree property** \(P \), you must:
 - State the subtree property \(P(<X>) \) you want to store at each node \(<X>\)
 - Show how to compute \(P(<X>) \) from the augmentations of \(<X>\)’s children in \(O(1) \) time
- Then stored property \(P(<X>) \) can be maintained without changing dynamic operation costs

Application: Sequence

- For sequence binary tree, we needed to know subtree **sizes**
- For just inserting/deleting a leaf, this was easy, but now need to handle rotations
- Subtree size is a subtree property, so can maintain via augmentation
 - Can compute size from sizes of children by summing them and adding 1

Conclusion

- Set AVL trees achieve \(O(\lg n) \) time for all set operations, except \(O(n \log n) \) time for build and \(O(n) \) time for iter
- Sequence AVL trees achieve \(O(\lg n) \) time for all sequence operations, except \(O(n) \) time for build and iter

Application: Sorting

- Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter
- For example, Direct Access Array Sort from Lecture 5
- AVL Sort is a new \(O(n \lg n) \)-time sorting algorithm