1. (a) The LMS estimator is

\[g(x) = E[Y|X] = \begin{cases} \frac{1}{2}X & 0 \leq X < 1 \\ X - \frac{1}{2} & 1 \leq X \leq 2 \\ \text{Undefined} & \text{Otherwise} \end{cases} \]

(b) If \(x \in [0, 1] \), the conditional PDF of \(Y \) is uniform over the interval \([0, x]\), and

\[E \left[(Y - g(X))^2 \mid X = x \right] = \frac{x^2}{12}. \]

Similarly, if \(x \in [1, 2] \), the conditional PDF of \(Y \) is uniform over \([1 - x, x]\), and

\[E \left[(Y - g(X))^2 \mid X = x \right] = \frac{1}{12}. \]

(c) The expectations \(E \left[(Y - g(X))^2 \right] \) and \(E \left[\text{var}(Y|X) \right] \) are equal because by the law of iterated expectations,

\[E \left[(Y - g(X))^2 \right] = E \left[E \left[(Y - g(X))^2 \mid X \right] \right] = E[\text{var}(Y \mid X)]. \]

Recall from part (b) that

\[\text{var}(Y \mid X = x) = \begin{cases} \frac{x^2}{12} & 0 \leq x < 1, \\ \frac{1}{12} & 1 \leq x \leq 2. \end{cases} \]

It follows that

\[E[\text{var}(Y \mid X)] = \int_0^1 \frac{x^2}{12} dx + \int_1^2 \frac{1}{12} dx = \frac{5}{72}. \]

Note that

\[f_X(x) = \begin{cases} 2x/3 & 0 \leq x < 1, \\ 2/3 & 1 \leq x \leq 2. \end{cases} \]

(d) The linear LMS estimator is

\[L(X) = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)} (X - E[X]). \]

In order to calculate \(\text{var}(X) \) we first calculate \(E[X^2] \) and \(E[X]^2 \).

\[E[X^2] = \int_0^2 x^2 \frac{2}{3} dx + \int_1^2 x^2 \frac{2}{3} dx, \]

\[= \frac{31}{18}, \]

\[E[X] = \int_0^2 x^2 \frac{2}{3} dx + \int_1^2 x^2 \frac{2}{3} dx, \]

\[= \frac{11}{9}. \]
\text{var}(X) = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = \frac{37}{162}.

\mathbf{E}[Y] = \int_0^1 \int_0^x \frac{2}{3} y \, dy \, dx + \int_1^2 \int_{x-1}^x \frac{2}{3} y \, dy \, dx = \frac{1}{9} + \frac{2}{3} = \frac{7}{9}.

To determine \(\text{cov}(X, Y) \) we need to evaluate \(\mathbf{E}[XY] \).

\[
\mathbf{E}[Y|X] = \int_{-\infty}^{\infty} y f_{X,Y}(x,y) \, dy
\]

\[
= \int_0^1 \int_0^x x y \frac{2}{3} \, dy \, dx + \int_1^2 \int_{x-1}^x y x \frac{2}{3} \, dy \, dx
\]

\[
= \frac{41}{36}
\]

Therefore \(\text{cov}(X, Y) = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y] = \frac{61}{324} \). Therefore,

\[
L(X) = \frac{7}{9} + \frac{61}{74} [X - \frac{11}{9}].
\]

(e) The LMS estimator is the one that minimizes mean squared error (among all estimators of \(Y \) based on \(X \)). The linear LMS estimator, therefore, cannot perform better than the LMS estimator, i.e., we expect \(\mathbf{E}[(Y - L(X))^2] \geq \mathbf{E}[(Y - g(X))^2] \). In fact,

\[
\mathbf{E}[(Y - L(X))^2] = \sigma_Y^2 (1 - \rho^2),
\]

\[
= \frac{37}{162} \left(1 - \left(\frac{61}{74} \right)^2 \right),
\]

\[
= 0.073 \geq \frac{5}{72}
\]

(f) For a single observation \(x \) of \(X \), the MAP estimate is not unique since all possible values of \(Y \) for this \(x \) are equally likely. Therefore, the MAP estimator does not give meaningful results.

2. (a) \(X \) is a binomial random variable with parameters \(n = 3 \) and given the probability \(p \) that a single bit is flipped in a transmission over the noisy channel:

\[
p_X(k;p) = \begin{cases}
\binom{3}{k} p^k (1-p)^{3-k}, & \text{k = 0, 1, 2, 3} \\
0 & \text{o.w.}
\end{cases}
\]

(b) To derive the ML estimator for \(p \) based on \(X_1, \ldots, X_n \), the numbers of bits flipped in the first \(n \) three-bit messages, we need to find the value of \(p \) that maximizes the likelihood function:

\[
\hat{p}_n = \arg \max_p p_{X_1,\ldots,X_n}(k_1, k_2, \ldots, k_n; p)
\]

Since the \(X_i \)'s are independent, the likelihood function simplifies to:
The log-likelihood function is given by

\[
\log(p_{X_1, \ldots, X_n}(k_1, k_2, \ldots, k_n; p)) = \sum_{i=1}^{n} k_i \log(p) + (3 - k_i) \log(1 - p) + \log\left(\frac{3}{k_i}\right)
\]

We then maximize the log-likelihood function with respect to \(p \):

\[
\frac{1}{p} \left(\sum_{i=1}^{n} k_i \right) - \frac{1}{1-p} \left(\sum_{i=1}^{n} (3 - k_i) \right) = 0
\]

\[
\left(3n - \sum_{i=1}^{n} k_i\right) p = \left(\sum_{i=1}^{n} k_i \right) (1-p)
\]

\[
\hat{p}_n = \frac{1}{3n} \sum_{i=1}^{n} k_i
\]

This yields the ML estimator:

\[
\hat{p}_n = \frac{1}{3n} \sum_{i=1}^{n} X_i
\]

(c) The estimator is unbiased since:

\[
\mathbb{E}_p[\hat{p}_n] = \frac{1}{3n} \sum_{i=1}^{n} \mathbb{E}_p[X_i] = \frac{1}{3n} \sum_{i=1}^{n} 3p = p
\]

(d) By the weak law of large numbers, \(\frac{1}{n} \sum_{i=1}^{n} X_i \) converges in probability to \(\mathbb{E}_p[X_i] = 3p \), and therefore \(\hat{p}_n = \frac{1}{3n} \sum_{i=1}^{n} X_i \) converges in probability to \(p \). Thus \(\hat{p}_n \) is consistent.

(e) Sending 3 bit messages instead of 1 bit messages does not affect the ML estimate of \(p \). To see this, let \(Y_i \) be a Bernoulli RV which takes the value 1 if the \(i \)th bit is flipped (with probability \(p \)), and let \(m = 3n \) be the total number of bits sent over the channel. The ML estimate of \(p \) is then

\[
\hat{P}_n = \frac{1}{3n} \sum_{i=1}^{n} X_i = \frac{1}{m} \sum_{i=1}^{m} Y_i.
\]

Using the central limit theorem, \(\hat{P}_n \) is approximately a normal RV for large \(n \). An approximate 95% confidence interval for \(p \) is then,

\[
\left[\hat{P}_n - 1.96 \sqrt{\frac{\frac{1}{3n} \cdot \hat{P}_n \cdot (1-\hat{P}_n)}{\frac{m}{3n}}}, \hat{P}_n + 1.96 \sqrt{\frac{\frac{1}{3n} \cdot \hat{P}_n \cdot (1-\hat{P}_n)}{\frac{m}{3n}}} \right]
\]
where \(\nu \) is the variance of \(Y_i \).

As suggested by the question, we estimate the unknown variance \(\nu \) by the conservative upper bound of \(1/4 \). We are also give that \(n = 100 \) and the number of bits flipped is 20, yielding \(\hat{P}_n = \frac{2}{50} \). Thus, an approximate 95% confidence interval is \([0.01, 0.123]\).

(f) Other estimates for the variance are the sample variance and the estimate \(\hat{P}_n (1 - \hat{P}_n) \). They potentially result in narrower confidence intervals than the conservative variance estimate used in part (e).