6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science
Spring, 2010

Class 8
Nancy Lynch
Today

• More undecidable problems:
 – About Turing machines: Emptiness, etc.
 – About other things: Post Correspondence Problem.

• Topics:
 – Undecidable problems about Turing machines.
 – The Post Correspondence Problem: Definition
 – Computation histories
 – First proof attempt
 – Second attempt: Undecidability of modified PCP (MPCP)
 – Finish undecidability of PCP

• Reading: Sipser Sections 4.2, 5.1.
Undecidable Problems about Turing Machines
Undecidable Problems about Turing Machines

• We already showed that Acc_{TM} and Halt_{TM} are not Turing-decidable (and their complements are not even Turing-recognizable).

• Now consider some other problems:
 – $\text{Acc}_{\text{TM}}^{01} = \{ <M> \mid M \text{ is a TM that accepts the string } 01 \}$$
 – $\text{Empty}_{\text{TM}} = \{ <M> \mid M \text{ is a TM that accepts no strings}\}$
 – $\text{Reg}_{\text{TM}} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is regular}\}$
 – EQ_{TM}, equivalence for TMs, = $\{ <M_1, M_2> \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
Acc01_{TM}

- Acc01_{TM} = \{ <M> | M accepts the string 01 \}
- Theorem 1: Acc01_{TM} is not Turing-decidable.
- This might seem surprising---it seems simpler than the general acceptance problem, since it involves just one particular string.

Proof attempt:
- Try a reduction---show if you could decide Acc01_{TM} then you could decide general acceptance problem Acc_{TM}.
- Let R be a TM that decides Acc01_{TM}; design S to decide Acc_{TM}.
- S: On input <M,w>:
 - Run R on <M>.
 - If R accepts… ??? Gives useful information only if w = 01.
 - Doesn’t work.
Acc01_{TM}

• **Theorem 1**: Acc01_{TM} is not Turing-decidable.

• **Proof attempt**:
 - Let R be a TM that decides Acc01_{TM}.
 - S: On input <M,w>:
 • Run R on <M>.
 • If R accepts... ???
 • Doesn’t work.

• How can we use information about what a machine does on 01 to help decide what a given machine M will do on an arbitrary w?

• **Idea**: Consider a different machine---modify M.
Theorem 1: \(\text{Acc}^{01}_{\text{TM}} \) is not Turing-decidable.

Proof:

- Let \(R \) be a TM that decides \(\text{Acc}^{01}_{\text{TM}} \); design \(S \) to decide \(\text{Acc}^{\text{TM}} \).

- \(S \): On input \(\langle M, w \rangle \):
 - Instead of running \(M \) on \(w \), \(S \) constructs a new machine \(M'_{M,w} \) that depends on \(M \) and \(w \).
 - \(M'_{M,w} \): On any input \(x \), ignores \(x \) and runs \(M \) on \(w \).
 - Thus, the new machine is the same as \(M \), but hard-wires in the given input \(w \).

- More precisely:
Theorem 1: \text{Acc01}^\text{TM} \text{ is not Turing-decidable.}

Proof:

– R decides \text{Acc01}^\text{TM}; design S to decide \text{Acc}^\text{TM}.

– S: On input \text{<M,w>}:

 • Step 1: Construct a new machine \text{<M' M,w>}, where
 – \text{M' M,w}: On input x:
 • Run M on w and accept/reject if M does.

 • Step 2: Run R on \text{<M' M,w>}, and accept/reject if R does.

– Note that S can construct \text{<M' M,w>} algorithmically, from inputs M and w.
Theorem 1: Acc01_{TM} is not Turing-decidable.

Proof:
- R decides Acc01_{TM}; design S to decide Acc_{TM}.
- S: On input <M,w>:
 - Step 1: Construct a new machine <M'_{M,w}>, where
 - M'_{M,w}: On input x:
 - Run M on w and accept/reject if M does.
 - Step 2: Run R on <M'_{M,w}>, and accept/reject if R does.
- Running R on <M'_{M,w}> tells us whether or not M'_{M,w} accepts 01.
- Claim: M'_{M,w} accepts 01 if and only if M accepts w.
 - M'_{M,w} always behaves the same, ignoring its own input and simulating M on w.
 - If M'_{M,w} accepts 01 (or anything else), then M accepts w.
 - If M accepts w, then M'_{M,w} accepts 01 (and everything else).
- So S gives the right answer for whether M accepts w.
Acc01_{TM}

- **Theorem 1**: Acc01_{TM} is not Turing-decidable.
- **Theorem**: Acc01_{TM} is Turing-recognizable.
- **Corollary**: (Acc01_{TM})^c is not Turing-recognizable.
Empty_{TM}

- Empty_{TM} = \{ <M> | M is a TM and L(M) = \emptyset \}
- **Theorem 2:** Empty_{TM} is not Turing-decidable.
- **Proof:**
 - Reduce Acc_{TM} to Empty_{TM}.
 - Modify the given machine M: Given <M,w>, construct a new machine M’ so that asking whether L(M’) = \emptyset gives the right answer to whether M accepts w:
 - Specifically, M accepts w if and only if L(M’) \neq \emptyset.
 - Use the same machine M’ as for Acc01_{TM}.
 - **S:** On input <M,w>:
 - Step 1: Construct <M’_{M,w}> as before, which acts on every input just like M on w.
 - Step 2: Ask whether L(M’_{M,w}) = \emptyset and output the opposite answer.
Empty$_{\text{TM}}$

• **Theorem 2**: Empty$_{\text{TM}}$ is not Turing-decidable.
• **Proof**:
 – Reduce Acc$_{\text{TM}}$ to Empty$_{\text{TM}}$.
 – S: On input $<M,w>$:
 • Step 1: Construct $<M'_M,w>$ as before, which acts on every input just like M on w.
 • Step 2: Ask whether $L(M'_M,w) = \emptyset$ and output the opposite answer.
 – Now M accepts w
 if and only if M'_M,w accepts everything
 if and only if M'_M,w accepts something
 if and only if $L(M'_M,w) \neq \emptyset$.
 – So S decides Acc$_{\text{TM}}$, contradiction.
 – So Empty$_{\text{TM}}$ is not Turing-decidable.
• Theorem 2: Empty$_{TM}$ is not Turing-decidable.
• Theorem: (Empty$_{TM}$)c is Turing-recognizable.
• Proof: On input $<M>$, run M on all inputs, dovetailed, accept if any accept.
• Corollary: Empty$_{TM}$ is not Turing-recognizable.
Reg\textsubscript{TM}
\begin{itemize}
\item \(\text{Reg}_{\text{TM}} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is regular} \}\)
\item That is, given a TM, we want to know whether its language is also recognized by some DFA.
\item For some, the answer is yes: TM that recognizes \(0^*1^*\)
\item For some, no: TM that recognizes \(\{0^n1^n \mid n \geq 0 \}\)
\item We can prove that there is no algorithm to decide whether the answer is yes or no.
\item **Theorem 3:** \(\text{Reg}_{\text{TM}}\) is not Turing-decidable.
\item **Proof:**
\begin{itemize}
\item Reduce \(\text{Acc}_{\text{TM}}\) to \(\text{Reg}_{\text{TM}}\).
\item Assume TM \(R\) that decides \(\text{Reg}_{\text{TM}}\), design \(S\) to decide \(\text{Acc}_{\text{TM}}\).
\item \(S\): On input \(<M,w>\):
\begin{itemize}
\item Step 1: Construct a new machine \(<M'_{M,w}>\) that accepts a regular language if and only if \(M\) accepts \(w\).
\item Tricky…
\end{itemize}
\end{itemize}
\end{itemize}
\textbf{Reg}_{TM}

- $\text{Reg}_{TM} = \{ \langle M \rangle \mid L(M) \text{ is regular} \}$
- **Theorem 3:** Reg_{TM} is not Turing-decidable.
- **Proof:**
 - Assume R decides Reg_{TM}, design S to decide Acc_{TM}.
 - **S:** On input $\langle M, w \rangle$:
 - **Step 1:** Construct a new machine $\langle M'_{M,w} \rangle$ that accepts a regular language if and only if M accepts w.
 - $M'_{M,w}$: On input x:
 - If x is of the form 0^n1^n, then accept.
 - If x is not of this form, then run M on w and accept if M accepts.
 - **Step 2:** Run R on input $\langle M'_{M,w} \rangle$, and accept/reject if R does.
Theorem 3: Reg_{TM} is not Turing-decidable.

Proof:
- S: On input $<M, w>$:
 - Step 1: Construct a new machine $< M'_{M,w} >$ that accepts a regular language if and only if M accepts w.
 - $M'_{M,w}$: On input x:
 - If x is of the form 0^n1^n, then accept.
 - If x is not of this form, then run M on w and accept if M accepts.
 - Step 2: Run R on input $< M'_{M,w} >$, and accept/reject if R does.
 - If M accepts w, then $M'_{M,w}$ accepts everything, hence recognizes the regular language $\{0,1\}^*$.
 - If M does not accept w, then $M'_{M,w}$ accepts exactly the strings of the form 0^n1^n, which constitute a non-regular language.
 - Thus, M accepts w iff $M'_{M,w}$ recognizes a regular language.
And more questions

- Many more questions about what TMs compute can be proved undecidable using the same method.

- One more example: \(\text{EQ}_{\text{TM}} = \{<M_1, M_2> | M_1 \text{ and } M_2 \text{ are basic TMs that recognize the same language} \} \)

- **Theorem 4**: \(\text{EQ}_{\text{TM}} \) is not Turing-decidable.

- **Proof**:
 - Reduce \(\text{Empty}_{\text{TM}} \) to \(\text{EQ}_{\text{TM}} \).
 - Assume R is a TM that decides \(\text{EQ}_{\text{TM}} \); design S to decide \(\text{Empty}_{\text{TM}} \).
 - Define any particular TM \(M_\emptyset \) with \(L(M) = \emptyset \) (M accepts nothing).
 - S: On input \(<M>\):
 - Run R on input \(<M, M_\emptyset>\); accept/reject if R does.
 - R tells whether \(<M, M_\emptyset> \in \text{EQ}_{\text{TM}} \), that is, whether \(L(M) = L(M_\emptyset) = \emptyset \).
An Undecidable Problem not involving Turing Machines
Post Correspondence Problem

• A simple string-matching problem.
• Given a finite set of “tile types”, e.g.:

\[
\begin{align*}
T & = \{ a \}, & c & a b, & b & c, & b & d \\
& \{ a & b \}, & c & a b, & b & c, & b & d \\
\end{align*}
\]

• Is there a nonempty finite sequence of tiles (allowing repetitions, and not necessarily using all the tile types) for which the concatenation of top strings = concatenation of bottom strings?
• Example:

\[
\begin{align*}
& a & b \quad b & d \\
& a & b \quad b & d
\end{align*}
\]

or

\[
\begin{align*}
& a & b \quad b & d \\
& a & b \quad b & d
\end{align*}
\]

• No limit on length, but must be finite.
• Call such a sequence a match, or correspondence.
• Post Correspondence Problem (PCP) =

\{ < T > | T is a finite set of tile types that has a match \}
Post Correspondence Problem

- Given a finite set of tile types, is there a nonempty finite sequence of tiles for which the concatenation of top strings = concatenation of bottom strings?
- Call sequence a match, or correspondence.
- Post Correspondence Problem (PCP) = \{ < T > | T is a finite set of tile types that has a match \}.
- Theorem: PCP is undecidable.
- Proof:
 - Reduce Acc_{TM} to PCP.
 - Previous reductions involved reducing one question about TMs (usually Acc_{TM}) to another question about TMs.
 - Now we reduce TM acceptance to a question about matching strings.
 - Do this by encoding TM computations using strings…
Computation Histories
Computation Histories

• **Computation History (CH):** A formal, stylized way of representing the computation of a TM on a particular input.

• **Configuration:**
 – Instantaneous snapshot of the TM’s computation.
 – Includes current state, current tape contents, current head position.
 – Write in standard form: \(w_1 q w_2 \), where \(w_1 \) and \(w_2 \) are strings of tape symbols and \(q \) is a state.
 – **Meaning:**
 • \(w_1 w_2 \) is the string on the non-blank portion of the tape, perhaps part of the blank portion (rest assumed blank).
 • \(w_1 \) is the portion of the string strictly to the left of the head.
 • \(w_2 \) is the portion directly under the head and to the right.
 • \(q \) is the current state.
Configurations

• **Configuration:**
 - $w_1 \ q \ w_2$, where w_1 and w_2 are strings of tape symbols and q is a state.

• **Meaning:**
 - $w_1 \ w_2$ is the string on the non-blank portion of the tape, perhaps part of the blank portion (rest assumed blank).
 - w_1 is the portion of the string strictly to the left of the head.
 - w_2 is the portion directly under the head and to the right.
 - q is the current state.

• **Example:** 0011q01 represents TM configuration:

```
0 0 1 1 0 1
```

FSC in state q
Computation Histories

• TM begins in a starting configuration, of the form \(q_0 \, w\), where \(w\) is the input string, and moves through a series of configurations, following the transition function.

• Computation History of TM \(M\) on input \(w\):
 – A (finite or infinite) sequence of configs \(C_1, C_2, C_3, \ldots, C_k, \ldots\), where
 • \(C_1, C_2, \ldots\) are configurations of \(M\).
 • \(C_1\) is the starting configuration with input \(w\).
 • Each \(C_{i+1}\) follows from \(C_i\) using \(M\)’s transition function.

• Accepting CH: Finite CH ending in accepting configuration.
• Rejecting CH: Finite CH ending in rejecting configuration.
• Represent CH as a string \(# \, C_1 \, # \, C_2 \, # \, \ldots \, # \, C_k \, #\), where \(#\) is a special separator symbol.
• Claim: \(M\) accepts \(w\) iff there is an accepting CH of \(M\) on \(w\).
Undecidability of PCP: First Attempt
First attempt

• **Theorem:** PCP is undecidable.

• **Proof attempt:**
 – Reduce Acc_M to PCP, that is, show that, if we can decide PCP, then we can decide Acc_M.
 – Given $<M,w>$, construct a finite set $T_{M,w}$ of tile types such that $T_{M,w}$ has a match iff M accepts w.
 – That is, $T_{M,w}$ has a match iff there is an accepting CH of M on w.
 – Write the accepting CH twice:

 # C_1 # C_2 # C_3 # … # C_k #
 # C_1 # C_2 # C_3 # … # C_k #
 – Split along boundaries of successive configurations:

 # \[\begin{array}{|c|c|c|c|c|c|} \hline
 C_1 & C_2 & C_3 & … & C_k \\
 \hline
 C_1 & C_2 & C_3 & … & C_k \\
 \hline
 \end{array} \]
First attempt

• Given \(<M,w>\), construct a finite set \(T_{M,w}\) of tile types s.t. \(T_{M,w}\) has a match iff there is an accepting CH of \(M\) on \(w\).

• Write the accepting CH twice, and split along boundaries of successive configurations:

\[
\begin{array}{cccccc}
\# & C_1 & \# & C_2 & \# & C_3 & \# & \ldots & \# & C_k & \#
\end{array}
\]

\[
\begin{array}{cccccc}
\# & C_1 & \# & C_2 & \# & C_3 & \# & \ldots & \# & C_k & \#
\end{array}
\]

– What tiles do we need?
– Try \(T_{M,w} = \) \[
\left\{ \begin{array}{ccc}
\# & C_k & \#
\end{array} \right\}
\]

where

\[
\left\{ \begin{array}{ccc}
\# & C_1 & \#
\end{array} \right\}
\]

• \(C_1 = \) starting configuration for \(M\) on \(w\),
• \(C_k = \) accepting configuration (can assume unique, because we can assume accepting machine cleans up its tape).
• \(C_j\) follows from \(C_i\) by rules of \(M\) (one step).
First attempt

\[T_{M,w} = \left\{ \left(\begin{array}{c} \# \\ \# C_1 \end{array} \right), \left(\begin{array}{c} C_k \\ \# \end{array} \right), \left(\begin{array}{c} C_i \\ \# C_j \end{array} \right) \right\} \]

- \(C_1 \) = starting configuration for \(M \) on \(w \),
- \(C_k \) = accepting configuration.
- \(C_j \) follows from \(C_i \) by rules of \(M \) (one step).

- \(M \) accepts \(w \) iff \(T_{M,w} \) has a match.

But there is a problem:

- \(T_{M,w} \) has infinitely many tile types \(T_{M,w} \), because \(M \) has infinitely many configurations.
- Configuration has tape contents, state, head position---infinitely many possibilities.
- Of course, in any particular accepting computation, only finitely many configurations appear.
- But we don’t know what these are ahead of time.
- So we can’t pick a single finite set of tiles.
First attempt

• M accepts w iff $T_{M,w}$ has a match.
• But:
 – $T_{M,w}$ has infinitely many tile types $T_{M,w}$, because M has infinitely many configurations.
 – In any particular accepting computation, only finitely many configurations appear.
 – But we can’t pick a single finite set of tiles for all computations.
• New insight:
 – Represent infinitely many configurations with finitely many tiles.
 – Going from one configuration to the next involves changing only a few “local” things:
 • State
 • Contents of one tape cell
 • Position of head, by at most 1
 – So let tiles represent small pieces of configs, not entire configs.
Undecidability of Modified PCP
Undecidability of Modified PCP

• **Modified PCP (MPCP):** Like PCP, but we’re given not just a finite set of tiles, but also a designated tile that must start the match.

• **MPCP = { <T, t > | T is a finite set of tiles, t is a tile in T, and there is a match for T starting with t }**.

• **Theorem:** MPCP is undecidable.

• Later, we remove the requirement to start with t:

• **Theorem:** PCP is undecidable.

• **Proof:**
 – By reducing MPCP to PCP.
 – If PCP were decidable, MPCP would be also, contradiction.
MPCP is undecidable

- Reduce Acc_{TM} to MPCP.
- Given $<M,w>$, construct $(T_{M,w}, t_{M,w})$, an instance of MPCP.
- 7 kinds of tiles:
 - Type 1 tile:
 \[
 \begin{array}{cc}
 \# & \\
 # \ q_0 \ w_1 \ w_2 \ \ldots \ w_n \ \# & \\
 \end{array}
 \]
 - $w = w_1 \ w_2 \ \ldots \ w_n$
 - $q_0 \ w_1 \ w_2 \ \ldots \ w_n$ is the starting configuration for input w.
 - Bottom string is long, but there’s only one tile like this.
 - Tile depends on w, which is OK.
 - Make this the initial tile $t_{M,w}$.
MPCP is undecidable

• Now consider how M goes from one configuration to the next.
• E.g., by moving right: $\delta(q,a) = (q',b,R)$.
• Config changes using this transition look like (e.g.):
 – $w_1 w_2 q a w_3 \rightarrow w_1 w_2 b q' w_3$.
 – Only change is to replace $q a$ by $b q'$.
• Type 2 tiles:
 – For each transition of the form $\delta(q,a) = (q',b,R)$:

\[
\begin{pmatrix}
q a \\
b q'
\end{pmatrix}
\]
MPCP is undecidable

• E.g., moving left: \(\delta(q,a) = (q',b,L) \).

• **Type 3 tile:**
 – For each transition of the form \(\delta(q,a) = (q',b,L) \), and every symbol \(c \) in the tape alphabet \(\Gamma \):

 \[
 \begin{array}{ccc}
 c & q & a \\
 q' & c & b \\
 \end{array}
 \]

 – Include arbitrary \(c \) because it could be anything.

• Notice, only finitely many tiles (so far).
MPCP is undecidable

• Now, to match unchanged portions of 2 consecutive configurations:

• Type 4 tile:
 – For every symbol a in the tape alphabet \(\Gamma \):

\[
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a}
\end{array}
\]

• Still only finitely many tiles.
MPCP is undecidable

• What can we do with the tiles we have so far?
• Example: Partial match
 – Suppose the starting configuration is $q_0\ 1\ 1\ 0$ and the first move is $(q_0, 1) \rightarrow (q_4, 0, R)$.
 – Then the next configuration is $0\ q_4\ 1\ 0$.
 – We can start the match with tile 1:
 $$
 \begin{array}{c}
 \text{#} \\
 \text{q}_0 110 \text{#}
 \end{array}
 $$

 – Continue with type 2 tile:
 $$
 \begin{pmatrix}
 q_0 & 1 \\
 0 & q_4
 \end{pmatrix}
 $$

 – Use type 4 tiles for the 2 unchanged symbols:

 – Yields:
 $$
 \begin{array}{c}
 \text{#} \\
 \text{q}_0\ 1\ 1\ 0\ \# \\
 \text{#} \\
 \text{q}_0\ 1\ 1\ 0\ \# \\
 \text{0}\ q_4\ 1\ 0\ \# \\
 \text{#} \\
 \text{#}
 \end{array}
 $$
MPCP is undecidable

• Now we put in the separators.
• Type 5 tiles:

\[
\begin{array}{c}
\\
\\
\end{array}
\quad \begin{array}{c}
\\
--# \\
\end{array}
\]

Allows us to add extra spaces at right end as needed---lets the configuration size grow.

• Example: Extend previous match:

\[
\begin{array}{cccccc}
& q_0 & 1 & 1 & 0 & # \\
& q_0 & 1 & 1 & 0 & # & 0 & q_4 & 1 & 0 & # \\
\end{array}
\]
MPCP is undecidable

• How does this end?

• Type 6 tiles:
 – For every \(a \) in \(\Gamma \):
 – A trick…
 – Adds “pseudo-steps” to the end of the computation, where the state “eats” adjacent symbols in the top row.
 – Yields one symbol less in each successive bottom configuration.
 – Do this until the remaining bottom “configuration” is \(q_{\text{acc}} \# \):

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]

\[
\begin{array}{c}
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\vdots \# \quad \vdots \# \\
\ldots \# \quad \ldots \# \\
\end{array}
\]
MPCP is undecidable

• To finish off:
• Type 7 tile:
\[
\left\{ \begin{array}{c}
q_{\text{acc}} \\
\#
\end{array} \right. \\
\#
\]

• That completes the definition of \(T_{M,w} \) and \(t_{M,w} \).
• Note that \(T_{M,w} \), for a given \(M \) and \(w \), is a finite set of tiles.
MPCP is undecidable

- That completes the definition of $T_{M,w}$ and $t_{M,w}$.
- Note that $T_{M,w}$, for a given M and w, is a finite set of tiles.
- Why does this work?
- Must show:
 - If M accepts w, then $T_{M,w}$ has a match beginning with $t_{M,w}$, that is, $<T_{M,w}, t_{M,w}> \in \text{MPCP}$.
 - If $<T_{M,w}, t_{M,w}> \in \text{MPCP}$, then M accepts w.

- If M accepts w, then there is an accepting computation history, which can be described by a match using the given tiles, starting from the distinguished initial tile:
MPCP is undecidable

• If M accepts w, then there is an accepting computation history, which can be described by a match using the given tiles, starting from the distinguished initial tile:

\[
\begin{array}{c}
\# \ C_1 \ # \ C_2 \ # \ C_3 \ # \ldots \ # \ C_k \ # \ C_{k+1} \ # \ldots \ # \ q_{\text{acc}} \ a \ # \ q_{\text{acc}} \ # \ # \\
\# \ C_1 \ # \ C_2 \ # \ C_3 \ # \ldots \ # \ C_k \ # \ C_{k+1} \ # \ldots \ # \ q_{\text{acc}} \ a \ # \ q_{\text{acc}} \ # \ #
\end{array}
\]

Accepting configuration Shrink by one symbol Keep shrinking Final, special tile

• So $T_{M,w}$ has a match beginning with $t_{M,w}$, that is, $<T_{M,w}, t_{M,w}> \in \text{MPCP}$.
MPCP is undecidable

- If $<T_{M,w}, t_{M,w}> \in \text{MPCP}$, that is, if $T_{M,w}$ has a match beginning with the designated tile $t_{M,w}$, then M accepts w.

- The rules are designed so the only way we can get a match beginning with the designated tile:

\[
\begin{array}{c}
\# \\
\# q_0 w_1 w_2 \ldots w_n \#
\end{array}
\]

is to have an actual accepting computation of M on w. Hand-wave, in the book, LTTR.

- Combining the two directions, we get:

\[M \text{ accepts } w \iff <T_{M,w}, t_{M,w}> \in \text{MPCP}, \text{ that is, } <M, w> \in \text{Acc}_M \iff <T_{M,w}, t_{M,w}> \in \text{MPCP}. \]
MPCP is undecidable

• \(<M, w> \in \text{Acc}_\text{TM}\) iff \(<T_{M,w}, t_{M,w}> \in \text{MPCP}\).

• Theorem: MPCP is undecidable.

• Proof:
 – By contradiction.
 – Assume MPCP is decidable, and decide \(\text{Acc}_\text{TM}\), using S:
 – S: On input \(<M, w>:\)
 • Step 1: Construct \(<T_{M,w}, t_{M,w}>\), instance of MPCP, as described.
 • Step 2: Use MPCP to decide if \(T_{M,w}\) has a match beginning with \(t_{M,w}\). If so, accept; if not, reject.
 – Thus, if MPCP is decidable, then also \(\text{Acc}_\text{TM}\) is decidable, contradiction.
Undecidability of (Unmodified) PCP
Undecidability of PCP

• We showed that MPCP, in which the input is a set of tiles + designated input tile, is undecidable, by reducing Acc$_{TM}$ to MPCP.
• Now we want:
• Theorem: PCP is undecidable.
• Why doesn’t our construction reduce Acc$_{TM}$ to PCP?
• $T_{M,v}$ has trivial matches, e.g., just

\[
\begin{array}{c}
\text{a} \\
\text{a}
\end{array}
\]

• Proof of the theorem:
 – To show that PCP is undecidable, reduce MPCP to PCP, that is, show that if PCP is decidable, then so is MPCP.
Undecidability of PCP

• **Theorem:** PCP is undecidable.
• **Proof:**
 – Reduce MPCP to PCP.
 – To decide MPCP using PCP, suppose we are given:
 • **T:** \[
 \begin{pmatrix}
 u_1 \\
 v_1
 \end{pmatrix}
 \quad \begin{pmatrix}
 u_2 \\
 v_2
 \end{pmatrix}
 \quad \ldots
 \quad \begin{pmatrix}
 u_k \\
 v_k
 \end{pmatrix}
 \]
 • **t:** \[
 \begin{pmatrix}
 u_1 \\
 v_1
 \end{pmatrix}
 \]
 – We want to know if there is a match beginning with **t**.
 – Construct an instance **T’** of ordinary PCP that has a match (starting with any tile) iff **T** has a match starting with **t**.
Undecidability of PCP

- Given T: \[\begin{pmatrix} u_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} u_2 \\ v_2 \end{pmatrix}, \ldots, \begin{pmatrix} u_k \\ v_k \end{pmatrix} \] t: \[\begin{pmatrix} u_1 \\ v_1 \end{pmatrix} \]
- Construct an instance T’ of PCP that has a match iff T has a match starting with t.
- Construction (technical):
 - Add 2 new alphabet symbols, ♠ and ♦
 - If \(u = u_1 u_2 \ldots u_n \) then define:
 - \(♠ u = ♠ u_1 ♠ u_2 \ldots ♠ u_n \)
 - \(u ♠ = u_1 ♠ u_2 \ldots ♠ u_n \)
 - \(♠ u ♠ = ♠ u_1 ♠ u_2 \ldots ♠ u_n \)
 - Instance T’ of PCP:
 \[\begin{pmatrix} ♠ u_1 \\ ♠ v_1 ♠ \end{pmatrix}, \begin{pmatrix} ♠ u_1 \\ ♠ v_1 ♠ \end{pmatrix}, \begin{pmatrix} ♠ u_2 \\ ♠ v_2 ♠ \end{pmatrix}, \ldots, \begin{pmatrix} ♠ u_k \\ ♠ v_k ♠ \end{pmatrix}, \begin{pmatrix} ♦ \end{pmatrix} \]
Undecidability of PCP

• **Claim:** T has a match starting with t iff T' has any match.

\implies Suppose T has a match starting with t:

Mimic this match with T' tiles, starting with u_1
and ending with v_1

Yields the same matching strings, with \heartsuits interspersed, and with \spadesuit at the end.

\Leftarrow If T' has any match, it must begin with u_1
because that’s the only tile in which top and bottom start with the same symbol.

Other tiles are like T tiles but with extra \heartsuits.
Stripping out \heartsuits yields match for T beginning with t.
Undecidability of PCP

• So, to decide MPCP using a decider for PCP:

• Given instance <T, t> for MPCP,
 – Step 1: Construct instance T’ for PCP, as above.
 – Step 2: Ask decider for PCP whether T’ has any match.
 • If so, answer yes for <T, t>.
 • If not, answer no.

• Since we already know MPCP is undecidable, so is PCP.
Next time…

• Mapping reducibility
• Rice’s Theorem
• **Reading:**
 – Sipser Section 5.3, Problems 5.28-5.30.