Gene Finding and HMMs

Lecture 1 - Introduction
Lecture 2 - Hashing and BLAST
Lecture 3 - Combinatorial Motif Finding
Lecture 4 - Statistical Motif Finding
Lecture 5 - Sequence alignment and Dynamic Programming
Lecture 6 - RNA structure and Context Free Grammars
Lecture 7 - Gene finding and Hidden Markov Models
Challenges in Computational Biology

4 Genome Assembly

Regulatory motif discovery

Comparative Genomics

Evolutionary Theory

Gene Finding

Sequence alignment

Database lookup

RNA folding

Gene expression analysis

RNA transcript

Cluster discovery

Protein network analysis

Gibbs sampling

Regulatory network inference

Emerging network properties
Outline

• Computational model
 – Simple Markov Models
 – Hidden Markov Models

• Working with HMMs
 – Dynamic programming (Viterbi)
 – Expectation maximization (Baum-Welch)

• Gene Finding in practice
 – GENSCAN
 – Performance Evaluation
Markov Chains & Hidden Markov Models

- **Markov Chain**
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities

- **HMM**
 - Q: states
 - V: observations
 - p: initial state probabilities
 - A: transition probabilities
 - E: emission probabilities
Markov Chain

Definition: A *Markov chain* is a triplet \((Q, p, A)\), where:

- \(Q\) is a finite set of states. Each state corresponds to a symbol in the alphabet \(\Sigma\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t\) in \(Q\).
- For each \(s, t\) in \(Q\) the transition probability is: \(a_{st} \equiv P(x_i = t | x_{i-1} = s)\)

Output: The output of the model is the set of states at each instant time => the set of states are observable

Property: The probability of each symbol \(x_i\) depends only on the value of the preceding symbol \(x_{i-1}\): \(P(x_i | x_{i-1},..., x_1) = P(x_i | x_{i-1})\)

Formula: The probability of the sequence:

\[
P(x) = P(x_L, x_{L-1},..., x_1) = P(x_L | x_{L-1}) \cdot P(x_{L-1} | x_{L-2}) \cdot \ldots \cdot P(x_2 | x_1) \cdot P(x_1)
\]
HMM (Hidden Markov Model)

Definition: An **HMM** is a 5-tuple \((Q, V, p, A, E)\), where:

- **Q** is a finite set of states, \(|Q| = N\)
- **V** is a finite set of observation symbols per state, \(|V| = M\)
- **p** is the initial state probabilities.
- **A** is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t \in Q\).
 - For each \(s, t \in Q\) the transition probability is: \(a_{st} \equiv P(x_i = t | x_{i-1} = s)\)
- **E** is a probability emission matrix, \(e_{sk} \equiv P(v_k \text{ at time } t | q_t = s)\)

Output: Only emitted symbols are observable by the system but not the underlying random walk between states -> “hidden”

Property: Emissions and transitions are dependent on the current state only and not on the past.
Typical HMM Problems

Annotation Given a model M and an observed string S, what is the most probable path through M generating S?

Classification Given a model M and an observed string S, what is the total probability of S under M?

Consensus Given a model M, what is the string having the highest probability under M?

Training Given a set of strings and a model structure, find transition and emission probabilities assigning high probabilities to the strings.
Example 1: Finding CpG islands
What are CpG islands?

• Regions of regulatory importance in promoters of many genes
 – Defined by their methylation state (epigenetic information)

• Methylation process in the human genome:
 – Very high chance of methyl-C mutating to T in CpG
 ➔ CpG dinucleotides are much rarer
 – BUT it is suppressed around the promoters of many genes
 ➔ CpG dinucleotides are much more frequent than elsewhere
 • Such regions are called **CpG islands**
 • A few hundred to a few thousand bases long

• Problems:
 – Given a short sequence, does it come from a CpG island or not?
 – How to find the CpG islands in a long sequence
Training Markov Chains for CpG islands

- **Training Set:**
 - set of DNA sequences w/ known CpG islands
- **Derive two Markov chain models:**
 - ‘+’ model: from the CpG islands
 - ‘-’ model: from the remainder of sequence
- **Transition probabilities for each model:**

<table>
<thead>
<tr>
<th>Probability of C following A</th>
<th>+</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.180</td>
<td>.274</td>
<td>.426</td>
<td>.120</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>.171</td>
<td>.368</td>
<td>.274</td>
<td>.188</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>.161</td>
<td>.339</td>
<td>.375</td>
<td>.125</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>.079</td>
<td>.355</td>
<td>.384</td>
<td>.182</td>
<td></td>
</tr>
</tbody>
</table>

\[a_{st}^+ = \frac{c_{st}^+}{\sum_{t'} c_{st'}^+} \]

\[c_{st}^+ \] is the number of times letter \(t \) followed letter \(s \) inside the CpG islands

\[a_{st}^- = \frac{c_{st}^-}{\sum_{t'} c_{st'}^-} \]

\[c_{st}^- \] is the number of times letter \(t \) followed letter \(s \) outside the CpG islands
Using Markov Models for CpG classification

Q1: Given a short sequence x, does it come from CpG island (Yes-No question)

- To use these models for discrimination, calculate the log-odds ratio:

$$S(x) \equiv \log \frac{P(x|\text{model } +)}{P(x|\text{model } -)} = \sum_{i=1}^{L} \log \frac{a_{+x_{i-1}x_i}}{a_{-x_{i-1}x_i}}$$

Histogram of log odds scores

- Histogram showing log odds scores for CpG islands and non-CpG regions.
Q2: Given a long sequence x, how do we find CpG islands in it

(Where question)

- Calculate the log-odds score for a window of, say, 100 nucleotides around every nucleotide, plot it, and predict CpG islands as ones w/ positive values
- Drawbacks: Window size

Use a hidden state: CpG (+) or non-CpG (-)
HMM for CpG islands

- Build a single model that combines both Markov chains:
 - ‘+’ states: A_+, C_+, G_+, T_+
 - Emit symbols: A, C, G, T in CpG islands
 - ‘-’ states: A_-, C_-, G_-, T_-
 - Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ‘+’ and the ‘-’ states
 - Infer most likely set of states, giving rise to observed emissions
 - ‘Paint’ the sequence with + and - states
Finding most likely state path

• Given the observed emissions, what was the path?
Probability of given path ρ & observations \mathbf{x}

- Known observations: CGCG
- Known sequence path: C+, G-, C-, G+

![Diagram](image-url)
Probability of given path p & observations x.

- Known observations: CGCG
- Known sequence path: C+, G-, C-, G+
Probability of given path p & observations x

$$P(p, x) = (a_{0,C+} \times 1) \times (a_{C+,G-} \times 1) \times (a_{G-,C-} \times 1) \times (a_{C-,G+} \times 1) \times (a_{G+,0})$$

But in general, we don’t know the path!
The three main questions on HMMs

1. **Evaluation**

 GIVEN a HMM M, and a sequence x,

 FIND $\text{Prob}[x \mid M]$

2. **Decoding**

 GIVEN a HMM M, and a sequence x,

 FIND the sequence π of states that maximizes $P[x, \pi \mid M]$

3. **Learning**

 GIVEN a HMM M, with unspecified transition/emission probs.,
 and a sequence x,

 FIND parameters $\theta = (e_i(.), a_{ij})$ that maximize $P[x \mid \theta]$
Problem 1: Decoding

Find the best parse of a sequence
Decoding

\[
\text{GIVEN } x = x_1 x_2 \ldots \ldots x_N
\]

We want to find \(\pi = \pi_1, \ldots, \pi_N, \) such that \(P[x, \pi] \) is maximized

\(\pi^* = \arg\max_{\pi} P[x, \pi] \)

We can use dynamic programming!

Let \(V_k(i) = \max_{\{\pi_1, \ldots, i-1\}} P[x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-1}, x_i, \pi_i = k] \)

= Probability of most likely sequence of states ending at state \(\pi_i = k \)
Decoding – main idea

Given that for all states k, and for a fixed position i,

$$V_k(i) = \max_{\{\pi_1, ..., \pi_{i-1}\}} P[x_1...x_{i-1}, \pi_1, ..., \pi_{i-1}, x_i, \pi_i = k]$$

What is $V_k(i+1)$?

From definition,

$$V_k(i+1) = \max_{\{\pi_1, ..., \pi_{i-1}\}} P[x_1...x_i, \pi_1, ..., \pi_i, x_{i+1}, \pi_{i+1} = l]$$

$$= \max_{\{\pi_1, ..., \pi_{i-1}\}} P(x_{i+1}, \pi_{i+1} = l | x_1...x_i, \pi_1, ..., \pi_i) P[x_1...x_i, \pi_1, ..., \pi_i]$$

$$= \max_{\{\pi_1, ..., \pi_{i-1}\}} P(x_{i+1}, \pi_{i+1} = l | \pi_i) P[x_1...x_{i-1}, \pi_1, ..., \pi_{i-1}, x_{i}, \pi_i]$$

$$= \max_k P(x_{i+1}, \pi_{i+1} = l | \pi_i = k) \max_{\{\pi_1, ..., \pi_{i-1}\}} P[x_1...x_{i-1}, \pi_1, ..., \pi_{i-1}, x_{i}, \pi_i = k]$$

$$= e_i(x_{i+1}) \max_k a_{kl} V_k(i)$$
The Viterbi Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
- \(V_0(0) = 1 \) (0 is the imaginary first position)
- \(V_k(0) = 0 \), for all \(k > 0 \)

Iteration:
- \(V_j(i) = e_j(x_i) \times \max_k a_{kj} V_k(i-1) \)
- \(\text{Ptr}_j(i) = \arg \max_k a_{kj} V_k(i-1) \)

Termination:
- \(P(x, \pi^*) = \max_k V_k(N) \)

Traceback:
- \(\pi_N^* = \arg \max_k V_k(N) \)
- \(\pi_{i-1}^* = \text{Ptr}_{\pi_i}(i) \)
The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence

Time:
\[O(K^2N) \]

Space:
\[O(KN) \]
Viterbi Algorithm – a practical detail

Underflows are a significant problem

\[P[x_1, \ldots, x_i, \pi_1, \ldots, \pi_i] = a_{0\pi_1} a_{\pi_1\pi_2} \cdots a_{\pi_i} e_{\pi_1}(x_1) \cdots e_{\pi_i}(x_i) \]

These numbers become extremely small – underflow

Solution: Take the logs of all values

\[V_i(i) = \log e_k(x_i) + \max_k [V_k(i-1) + \log a_{ki}] \]
Example

Let x be a sequence with a portion of $\sim 1/6$ 6's, followed by a portion of $\sim \frac{1}{2}$ 6's...

$$x = 123456123456\ldots 123456626364656\ldots 1626364656$$

Then, it is not hard to show that optimal parse is (exercise):

$$FFFF\ldots\ldots\ldots F \quad LLL\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots L$$

6 nucleotides “123456” parsed as F, contribute $0.95^6 \times (1/6)^6 = 1.6 \times 10^{-5}$

parsed as L, contribute $0.95^6 \times (1/2)^1 \times (1/10)^5 = 0.4 \times 10^{-5}$

“162636” parsed as F, contribute $0.95^6 \times (1/6)^6 = 1.6 \times 10^{-5}$

parsed as L, contribute $0.95^6 \times (1/2)^3 \times (1/10)^3 = 9.0 \times 10^{-5}$
Problem 2: Evaluation

Find the likelihood a sequence is generated by the model
Generating a sequence by the model

Given a HMM, we can generate a sequence of length \(n \) as follows:

1. Start at state \(\pi_1 \) according to prob \(a_{0\pi_1} \)
2. Emit letter \(x_1 \) according to prob \(e_{\pi_1}(x_1) \)
3. Go to state \(\pi_2 \) according to prob \(a_{\pi_1\pi_2} \)
4. ... until emitting \(x_n \)

Diagram:

- Start at state 0
- Transition to state 1 with prob \(a_{02} \)
- Emit letter \(x_1 \)
- Transition to state 2
- Transition to state 1
- ...
A couple of questions

Given a sequence x,

- What is the probability that x was generated by the model?
- Given a position i, what is the most likely state that emitted x_i?

Example: the dishonest casino

Say $x = 12341623162616364616234161221341$

Most likely path: $\pi = \text{FF} \ldots \text{F}$
However: marked letters more likely to be L than unmarked letters
Evaluation

We will develop algorithms that allow us to compute:

\[P(x) \] Probability of \(x \) given the model

\[P(x_i \ldots x_j) \] Probability of a substring of \(x \) given the model

\[P(\pi_i = k \mid x) \] Probability that the \(i^{th} \) state is \(k \), given \(x \)

A more refined measure of which states \(x \) may be in
The Forward Algorithm

We want to calculate

\[P(x) = \text{probability of } x, \text{ given the HMM} \]

Sum over all possible ways of generating \(x \):

\[P(x) = \sum_{\pi} P(x, \pi) = \sum_{\pi} P(x | \pi) P(\pi) \]

To avoid summing over an exponential number of paths \(\pi \), define

\[f_k(i) = P(x_1 \ldots x_i, \pi_i = k) \text{ (the forward probability)} \]
The Forward Algorithm – derivation

Define the forward probability:

\[f_l(i) = P(x_1 \ldots x_i, \pi_i = l) \]

\[= \sum_{\pi_1 \ldots \pi_{i-1}} P(x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-1}, \pi_i = l) \cdot e_l(x_i) \]

\[= \sum_k \sum_{\pi_1 \ldots \pi_{i-2}} P(x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-2}, \pi_{i-1} = k) \cdot a_{kl} \cdot e_l(x_i) \]

\[= e_l(x_i) \cdot \sum_k f_k(i-1) \cdot a_{kl} \]
The Forward Algorithm

We can compute $f_k(i)$ for all k, i, using dynamic programming!

Initialization:

- $f_0(0) = 1$
- $f_k(0) = 0$, for all $k > 0$

Iteration:

$$f_i(i) = e_i(x_i) \sum_k f_k(i-1) a_{kl}$$

Termination:

$$P(x) = \sum_k f_k(N) a_{k0}$$

Where, a_{k0} is the probability that the terminating state is k (usually $= a_{0k}$)
Relating Forward and Viterbi

VITERBI

Initialization:
- $V_0(0) = 1$
- $V_k(0) = 0$, for all $k > 0$

Iteration:
- $V_j(i) = e_j(x_i) \max_k V_k(i-1) a_{kj}$

Termination:
- $P(x, \pi^*) = \max_k V_k(N)$

FORWARD

Initialization:
- $f_0(0) = 1$
- $f_k(0) = 0$, for all $k > 0$

Iteration:
- $f_i(i) = e_i(x_i) \sum_k f_k(i-1) a_{kl}$

Termination:
- $P(x) = \sum_k f_k(N) a_{k0}$
Motivation for the Backward Algorithm

We want to compute

\[P(\pi_i = k \mid x), \]

the probability distribution on the \(i^{th} \) position, given \(x \)

We start by computing

\[
P(\pi_i = k, x) = P(x_1 \ldots x_i, \pi_i = k, x_{i+1} \ldots x_N) \\
= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid x_1 \ldots x_i, \pi_i = k) \\
= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid \pi_i = k)
\]

Forward, \(f_k(i) \) Backward, \(b_k(i) \)
The Backward Algorithm – derivation

Define the backward probability:

\[b_k(i) = P(x_{i+1} \ldots x_N \mid \pi_i = k) \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N, \pi_{i+1}, \ldots, \pi_N \mid \pi_i = k) \]

\[= \sum_l \sum_{\pi_{i+1} \ldots \pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N, \pi_{i+1} = l, \pi_{i+2}, \ldots, \pi_N \mid \pi_i = k) \]

\[= \sum_l e_l(x_{i+1}) a_{kl} \sum_{\pi_{i+1} \ldots \pi_N} P(x_{i+2}, \ldots, x_N, \pi_{i+2}, \ldots, \pi_N \mid \pi_{i+1} = l) \]

\[= \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1) \]
The Backward Algorithm

We can compute $b_k(i)$ for all k, i, using dynamic programming

Initialization:

$$b_k(N) = a_{k0}, \text{ for all } k$$

Iteration:

$$b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)$$

Termination:

$$P(x) = \sum_l a_{0l} e_l(x_1) b_l(1)$$
Computational Complexity

What is the running time, and space required, for Forward, and Backward?

Time: $O(K^2N)$
Space: $O(KN)$

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a constant
Posterior Decoding

We can now calculate

$$P(\pi_i = k \mid x) = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^* by Posterior Decoding:

$$\pi_i^* = \arg\max_k P(\pi_i = k \mid x)$$
Posterior Decoding

• For each state,
 – Posterior Decoding gives us a curve of likelihood of state for each position
 – That is sometimes more informative than Viterbi path π^*

• Posterior Decoding may give an invalid sequence of states
 – Why?
Maximum Weight Trace

• Another approach is to find a sequence of states under some constraint, and maximizing expected accuracy of state assignments

\[- A_j(i) = \max_k \text{ such that } \text{Condition}(k, j) \quad A_k(i-1) + P(\pi_i = j \mid x) \]

• We will revisit this notion again
Problem 3: Learning

Re-estimate the parameters of the model based on training data
Two learning scenarios

1. Estimation when the “right answer” is known

 Examples:
 - **GIVEN:** a genomic region \(x = x_1 \ldots x_{1,000,000} \) where we have good (experimental) annotations of the CpG islands
 - **GIVEN:** the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

 Examples:
 - **GIVEN:** the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition
 - **GIVEN:** 10,000 rolls of the casino player, but we don’t see when he changes dice

 QUESTION: Update the parameters \(\theta \) of the model to maximize \(P(x|\theta) \)
Case 1. When the right answer is known

Given \(x = x_1 \ldots x_N \)
for which the true \(\pi = \pi_1 \ldots \pi_N \) is known,

Define:

\[
A_{kl} = \text{# times } k \rightarrow l \text{ transition occurs in } \pi
\]
\[
E_k(b) = \text{# times state } k \text{ in } \pi \text{ emits } b \text{ in } x
\]

We can show that the maximum likelihood parameters \(\theta \) are:

\[
a_{kl} = \frac{A_{kl}}{\sum_i A_{ki}}
\]
\[
e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)}
\]
Case 1. When the right answer is known

Intuition: When we know the underlying states,
Best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe
\[x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 \]
Then:
\[a_{FF} = 1; \quad a_{FL} = 0 \]
\[e_F(1) = e_F(3) = .2; \]
\[e_F(2) = .3; \quad e_F(4) = 0; \quad e_F(5) = e_F(6) = .1 \]
Pseudocounts

Solution for small training sets:

Add pseudocounts

\[A_{kl} = \# \text{ times } k \rightarrow l \text{ transition occurs in } \pi + r_{kl} \]
\[E_k(b) = \# \text{ times state } k \text{ in } \pi \text{ emits } b \text{ in } x + r_k(b) \]

\(r_{kl}, r_k(b) \) are pseudocounts representing our prior belief

Larger pseudocounts \(\Rightarrow \) Strong prior belief

Small pseudocounts (\(\varepsilon < 1 \)): just to avoid 0 probabilities
Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:

\[
\begin{align*}
 r_{0F} &= r_{0L} = r_{F0} = r_{L0} = 1; \\
 r_{FL} &= r_{LF} = r_{FF} = r_{LL} = 1; \\
 r_F(1) &= r_F(2) = \ldots = r_F(6) = 20 \quad \text{(strong belief fair is fair)} \\
 r_F(1) &= r_F(2) = \ldots = r_F(6) = 5 \quad \text{(wait and see for loaded)}
\end{align*}
\]

Above #s pretty arbitrary – assigning priors is an art
Case 2. When the right answer is unknown

We don’t know the true A_{kl}, $E_k(b)$

Idea:

• We estimate our “best guess” on what A_{kl}, $E_k(b)$ are

• We update the parameters of the model, based on our guess

• We repeat
Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ

Given $x = x_1 \ldots x_N$

for which the true $\pi = \pi_1 \ldots \pi_N$ is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate $A_{kl}, E_k(b)$ in the training data
2. Update θ according to $A_{kl}, E_k(b)$
3. Repeat 1 & 2, until convergence
Estimating new parameters

To estimate A_{kl}:

At each position i of sequence x,

Find probability transition $k \rightarrow l$ is used:

$$P(\pi_i = k, \pi_{i+1} = l | x) = \frac{1}{P(x)} \times P(\pi_i = k, \pi_{i+1} = l, x_1...x_N) = \frac{Q}{P(x)}$$

where $Q = P(x_1...x_i, \pi_i = k, \pi_{i+1} = l, x_{i+1}...x_N) =$

$$= P(\pi_{i+1} = l, x_{i+1}...x_N | \pi_i = k) P(x_1...x_i, \pi_i = k) =$$

$$= P(\pi_{i+1} = l, x_{i+1}x_{i+2}...x_N | \pi_i = k) f_k(i) =$$

$$= P(x_{i+2}...x_N | \pi_{i+1} = l) P(x_{i+1} | \pi_{i+1} = l) P(\pi_{i+1} = l | \pi_i = k) f_k(i) =$$

$$= b_{l}(i+1) e_{l}(x_{i+1}) a_{kl} f_k(i)$$

So:

$$P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i) a_{kl} e_{l}(x_{i+1}) b_{l}(i+1)}{P(x | \theta)}$$
Estimating new parameters

So,

\[
A_{kl} = \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_i \frac{f_k(i) \ a_{kl} \ e_l(x_{i+1}) \ b_l(i+1)}{P(x \mid \theta)}
\]

Similarly,

\[
E_k(b) = \frac{1}{P(x)} \sum_{i \mid x_i = b} f_k(i) \ b_k(i)
\]
Estimating new parameters

If we have several training sequences, x^1, \ldots, x^M, each of length N,

$$A_{kl} = \sum_X \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_X \sum_i \frac{f_k(i) a_{kl} e_{i}(x_{i+1}) b_{l}(i+1)}{P(x \mid \theta)}$$

Similarly,

$$E_k(b) = \sum_X \frac{1}{P(x)} \sum \{i \mid x_i = b\} f_k(i) b_k(i)$$
The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters (or arbitrary)

Iteration:
1. Forward
2. Backward
3. Calculate A_{kl}, $E_k(b)$
4. Calculate new model parameters a_{kl}, $e_k(b)$
5. Calculate new log-likelihood $P(x | \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x | \theta)$ does not change much
The Baum-Welch Algorithm – comments

Time Complexity:

\# iterations \times O(K^2N)

- Guaranteed to increase the log likelihood of the model

\[P(\theta \mid x) = \frac{P(x, \theta)}{P(x)} = \frac{P(x \mid \theta)}{P(x) P(\theta)} \]

- Not guaranteed to find globally best parameters

 Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overtraining
Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find π^*
2. Calculate A_{kl}, $E_k(b)$ according to π^* + pseudocounts
3. Calculate the new parameters a_{kl}, $e_k(b)$

Until convergence

Notes:
- Convergence is guaranteed – Why?
- Does not maximize $P(x \mid \theta)$
- In general, worse performance than Baum-Welch
How to Build an HMM

• **General Scheme:**
 – Architecture/topology design
 – Learning/Training:
 • Training Datasets
 • Parameter Estimation
 – Recognition/Classification:
 • Testing Datasets
 • Performance Evaluation
Parameter Estimation for HMMs (Case 1)

- **Case 1**: All the paths/labels in the set of training sequences are known:
 - Use the Maximum Likelihood (ML) estimators for:
 \[
 a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}} \quad \text{and} \quad e_{kk} = \frac{E_k(x)}{\sum_{x'} E_k(x')}
 \]
 - Where \(A_{kl} \) and \(E_k(x) \) are the number of times each transition or emission is used in training sequences
 - Drawbacks of ML estimators:
 - Vulnerable to overfitting if not enough data
 - Estimations can be undefined if never used in training set (add pseudocounts to reflect a prior biases about probability values)
Parameter Estimation for HMMs (Case 2)

- **Case 2**: The paths/labels in the set of training sequences are UNknown:
 - Use Iterative methods (e.g., Baum-Welch):
 1. Initialize a_{kl} and e_{kx} (e.g., randomly)
 2. Estimate A_{kl} and $E_k(x)$ using current values of a_{kl} and e_{kx}
 3. Derive new values for a_{kl} and e_{kx}
 4. Iterate Steps 2-3 until some stopping criterion is met (e.g., change in the total log-likelihood is small)
 - **Drawbacks of Iterative methods**:
 - Converge to local optimum
 - Sensitive to initial values of a_{kl} and e_{kx} (Step 1)
 - Convergence problem is getting worse for large HMMs
HMM Architectural/Topology Design

• In general, HMM states and transitions are designed based on the knowledge of the problem under study

• **Special Class:** Explicit State Duration HMMs:

 – Self-transition state to itself:

 \[
 q_i \xrightarrow{a_{ii}} q_i \\
 q_i \xrightarrow{a_{jj}} q_i
 \]

 • The probability of staying in the state for \(d\) residues:
 \[
 p_i(d \text{ residues}) = (a_{ii})^{d-1}(1-a_{ii}) \quad \text{– exponentially decaying}
 \]
 • Exponential state duration density is often inappropriate
 \[
 \Rightarrow \text{Need to explicitly model duration density in some form}
 \]

 – Specified state density:

 • Used in GenScan

 \[
 p_i(d) \xrightarrow{\ldots} p_j(d) \\
 q_i \xrightarrow{\ldots} q_j
 \]
HMM-based Gene Finding

• GENSCAN (Burge 1997)
• FGENESH (Solovyev 1997)
• HMMgene (Krogh 1997)
• GENIE (Kulp 1996)
• GENMARK (Borodovsky & McIninch 1993)
• VEIL (Henderson, Salzberg, & Fasman 1997)
VEIL: Viterbi Exon-Intron Locator

- Contains 9 hidden states or features
- Each state is a complex internal Markovian model of the feature
- Features:
 - Exons, introns, intergenic regions, splice sites, etc.

Exon HMM Model

- **VEIL Architecture**
 - **Enter**: start codon or intron (3’ Splice Site)
 - **Exit**: 5’ Splice site or three stop codons (taa, tag, tga)
Genie

- Uses a generalized HMM (GHMM)
- Edges in model are complete HMMs
- States can be any arbitrary program
- States are actually neural networks specially designed for signal finding

- J5’ – 5’ UTR
- EI – Initial Exon
- E – Exon, Internal Exon
- I – Intron
- EF – Final Exon
- ES – Single Exon
- J3’ – 3’ UTR
Genscan Overview

- Developed by Chris Burge (Burge 1997), in the research group of Samuel Karlin, Dept of Mathematics, Stanford Univ.

- Characteristics:
 - Designed to predict complete gene structures
 - Introns and exons, Promoter sites, Polyadenylation signals
 - Incorporates:
 - Descriptions of transcriptional, translational and splicing signal
 - Length distributions (Explicit State Duration HMMs)
 - Compositional features of exons, introns, intergenic, C+G regions
 - Larger predictive scope
 - Deal w/ partial and complete genes
 - Multiple genes separated by intergenic DNA in a seq
 - Consistent sets of genes on either/both DNA strands

- Based on a general probabilistic model of genomic sequences composition and gene structure
Genscan Architecture

• It is based on Generalized HMM (GHMM)
• Model both strands at once
 – Other models: Predict on one strand first, then on the other strand
 – Avoids prediction of overlapping genes on the two strands (rare)
• Each state may output a string of symbols (according to some probability distribution).
• Explicit intron/exon length modeling
• Special sensors for Cap-site and TATA-box
• Advanced splice site sensors

Fig. 3, Burge and Karlin 1997
GenScan States

- N - intergenic region
- P - promoter
- F - 5' untranslated region
- \(E_{\text{sngl}} \) – single exon (intronless) (translation start -> stop codon)
- \(E_{\text{init}} \) – initial exon (translation start -> donor splice site)
- \(E_k \) – phase k internal exon (acceptor splice site -> donor splice site)
- \(E_{\text{term}} \) – terminal exon (acceptor splice site -> stop codon)
- \(I_k \) – phase k intron: 0 – between codons; 1 – after the first base of a codon; 2 – after the second base of a codon

Figure by MIT OCW.
Accuracy Measures

Sensitivity vs. Specificity

(adapted from Burset & Guigo 1996)

<table>
<thead>
<tr>
<th></th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>TP</th>
<th>FN</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Sensitivity (Sn)**: Fraction of actual coding regions that are correctly predicted as coding
- **Specificity (Sp)**: Fraction of the prediction that is actually correct
- **Correlation Coefficient (CC)**: Combined measure of Sensitivity & Specificity
 - **Range**: -1 (always wrong) → +1 (always right)

\[
Sn = \frac{TP}{TP+FN} \\
Sn = \frac{TP}{TP+FP} \\
CC = \frac{(TP \times TN) - (FN \times FP)}{((TP+FN)\times(TN+FP)\times(TP+FP)\times(TN+FN))^{1/2}} \\
AC = \frac{1}{2} \left(\frac{TP}{TP+FN} + \frac{TP}{TP+FP} + \frac{TN}{TN+FP} + \frac{TN}{TN+FN} \right) - 1
\]

Figure by MIT OCW.
Test Datasets

• Sample Tests reported by Literature
 – Test on the set of 570 vertebrate gene seqs (Burset&Guigo 1996) as a standard for comparison of gene finding methods.

 – Test on the set of 195 seqs of human, mouse or rat origin (named HMR195) (Rogie 2001).
Results: Accuracy Statistics

Table: Relative Performance (adapted from Rogic 2001)

<table>
<thead>
<tr>
<th>Programs</th>
<th># of seq</th>
<th>Test By Rogic 2001</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nucleotide</td>
<td>Exon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>accuracy</td>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sn</td>
<td>Sp</td>
<td>CC</td>
<td>ESn</td>
<td>ESp</td>
</tr>
<tr>
<td>Genscan</td>
<td>195(3)</td>
<td>0.95</td>
<td>0.90</td>
<td>0.91</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>HMMgene</td>
<td>195(5)</td>
<td>0.93</td>
<td>0.93</td>
<td>0.91</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>MZEF</td>
<td>119(8)</td>
<td>0.70</td>
<td>0.73</td>
<td>0.66</td>
<td>0.58</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Complicating Factors for Comparison

- Gene finders were trained on data that had genes homologous to test seq.
 - Percentage of overlap is varied
- Some gene finders were able to tune their methods for particular data
- Methods continue to be developed

Needed

- Train and test methods on the same data.
- Do cross-validation (10% leave-out)

of seqs - number of seqs effectively analyzed by each program; in parentheses is the number of seqs where the absence of gene was predicted;

Sn - nucleotide level sensitivity; Sp - nucleotide level specificity;

CC - correlation coefficient;

ESn - exon level sensitivity; ESp - exon level specificity
Why not Perfect?

• **Gene Number**
 usually approximately correct, but may not

• **Organism**
 primarily for human/vertebrate seqs; maybe lower accuracy for non-vertebrates. ‘Glimmer’ & ‘GeneMark’ for prokaryotic or yeast seqs

• **Exon and Feature Type**
 Internal exons: predicted more accurately than Initial or Terminal exons;
 Exons: predicted more accurately than Poly-A or Promoter signals

• **Biases in Test Set** *(Resulting statistics may not be representative)*
 The Burset/Guigó (1996) dataset:
 - Biased toward short genes with relatively simple exon/intron structure
 The Rogic (2001) dataset:
 - DNA seqs: GenBank r-111.0 (04/1999 <- 08/1997);
 - source organism specified;
 - consider genomic seqs containing exactly one gene;
 - seqs>200kb were discarded; mRNA seqs and seqs containing pseudo genes or alternatively spliced genes were excluded.
What We Learned…

• Genes are complex structures which are difficult to predict with the required level of accuracy/confidence

• Different HMM-based approaches have been successfully used to address the gene finding problem:
 – Building an architecture of an HMM is the hardest part, it should be biologically sound & easy to interpret
 – Parameter estimation can be trapped in local optimum

• Viterbi algorithm can be used to find the most probable path/labels

• These approaches are still not perfect