Today: Dynamic Optimality I (of 2)
- binary search trees
- analytic bounds
- splay trees
- geometric view
- greedy algorithm
Q: is there one best binary search tree (BST)?

BST: comparison data structure supporting search
(& predecessor/successor, insert/delete)

Also a model of computation (for DSs)
- data must be stored in a BST
- unit-cost operations:
 - walk left, right, or up (parent)
 - rotate this node & its parent

(− create/destroy leaf)
⇒ search cost = length of root-to-node path

DSs in this model:
- vanilla BST (no rotations)
- AVL trees
- red-black trees (B-trees)
- BB[x] trees
- splay trees
- Tango trees
- Greedy

}\}

\[O(\log n) /op. \]

}\}

\{ focus here
Is $O(lg n)$/search optimal?
- depends on sequence of searches
- say we're storing keys $\xi_1, \xi_2, \ldots, \xi_n\}$
 & search for x_1, x_2, \ldots, x_m

Sequential access property:
1, 2, ..., n $\Rightarrow O(1)$ amortized/op.
 [in-order traversal in any BST]

Dynamic finger property:
$|x_i - x_{i-1}| = k \Rightarrow O(lg k)$/op. possible
 [think level-linked B-trees ~ but BST]

Entropy bound/static optimality:
k appears p_k fraction of the time $\Rightarrow O(\sum_{k=1}^{n} (p_k lg \frac{1}{p_k}))$/op.
 [store x_i at height $\leq lg \frac{1}{p_k} + 1$]

Working-set property:
if t_i distinct keys accessed since last access to x_i then $O(lg t_i)$ possible
 [intuition: store most recent higher up]
\Rightarrow if all $x_i \in S$ then $O(lg |S|)$/op. possible
 [form BST on S, put rest below]

= hard to do with BST, but possible!
Unified property: \[\text{If } t_{ij} \text{ distinct keys accessed in } x_i \ldots x_j \text{ then } x_j \text{ costs } O \left(\log \min_i \left[\frac{x_i - x_j}{t_{ij} + 2} \right] \right) \]

"Fast if close to something recent"\star
- e.g. \(\frac{n}{2}, \frac{n}{2} + 1, 3 \cdot \frac{n}{2} + 3, \ldots \) \(\Rightarrow O(1)/\text{op} \)
- implies both working set & dynamic finger
- possible on pointer machine [Iacono: Bădiou, Cole, Demaine, Iacono-Algorithmica 2007]
- possible on BST up to additive \(O(lg \lg n) \) [Bose, Douieb, Dujmović, Howat-Algorithmica 2012]
- **OPEN**: possible on a BST?

Dynamic optimality: \(O(1) \)-competitive:
\[
\text{total cost} = O(\text{OPT})
\]
- **OPEN**: possible for any (online) BST?
- for any pointer-machine DS?
- **OPEN**: is any pointer-machine DS \(= O(\text{OPT offline pointer-machine DS})? \)
- balanced BST is \(O(lg n) \)-competitive
- Tango trees are \(O(lg \lg n) \)-competitive [L6]
Splay trees: [Sleator & Tarjan - JACM 1985]
- binary search for x
- modify the path:
 - zig-zig:

 - zig-zag:

- at the end, possible single rotation to put x at root
- key feature: at most half the nodes on the path go down in the tree

Performance: (amortized)
- has working-set property [Sleator & Tarjan]
- has dynamic-finger property [Cole - SICOMP 2003]

- CONJECTURE: has unified property [Iacono]
- CONJECTURE: dynamically optimal [Sleator & Tarjan]
Geometric view:

access sequence → point set \(\{ x_i _i \} \)

BST execution → point set: which nodes touched during search(\(x_i \))?

Theorem: point set is a valid BST execution \(\iff\) Arborally Satisfied Set (ASS)

A rectangle spanned by two points in set, not on horizontal/vertical line, contains another point - in fact must have another point on a rectangle side incident to either corner:

Corollary: OPT = smallest ASS containing input

OPEN: complexity? O(1)-approximation?
Proof of Theorem:

\(\Rightarrow \) consider rectangle spanned by \((i, x) \Rightarrow (j, y)\)

- let \(a_t = \text{lca of } x \& y\) just before time \(t\)
- for all \(t\): \(x \leq a_t \leq y\) & \(a_t\) is an ancestor of \(x \& y\)

\(\Rightarrow (a_i, i) \& (a_j, j) \in \text{execution} \)

(need to touch all ancestors of touched nodes)

- want a third point in the rectangle
- if \(a_i \neq x\) then use \((a_i, i)\)
- if \(a_j \neq y\) then use \((a_j, j)\)
- else: \(a\) changes from \(x\) to \(y\) between times \(i \& j\)

\(\Rightarrow y\) rotated before time \(j\)

\(\Rightarrow (y, t) \in \text{execution for some } i \leq t < j\)
(⇐) define tree at all times to be treap: BST & heap ordered by next-touch-time
- note: next-touch-time has some ties, so this is not uniquely defined
- when we reach time i, nodes to touch form a connected subtree at the top (by heap-order property)
- these nodes get new next-touch-time
- re-arrange into local treap (this still may be ambiguous — break ties arbitrarily — but still restricts global choice)
- claim: global treap

\[
\text{touched} \quad \Rightarrow \quad \text{heapify}\quad \Rightarrow \quad \text{in heap order?}
\]

if y to be touched sooner than x then \((x, \text{now}) \rightarrow (y, \text{next-touch}(y))\)
is an unsatisfied rectangle:
(according to 2nd definition of ASS)

\[
\text{next-touch}(x) \rightarrow \quad \text{empty by “if”} \rightarrow \quad \text{leftmost such point would be right child of x after search}(x_i), \text{ not y}
\]
Simple example:
Greedy algorithm: [Lucas 1988; Munro 2000]
- consider point set one row at a time
- add the necessary points on that row
- in tree view: re-arrange root-to-leaf path optimally for future searches

Conjecture: Greedy = $O(OPT)$

or even: $= OPT + O(m)$

- seems obvious... “just” need to show
 you needn’t stray from the access path

So what?

Theorem: online ASS algorithm
→ online BST (with $O(1)$ slowdown)

Corollary: Greedy is actually an online BST!
- Conjecture → dynamically optimal
Proof sketch of theorem:

- store touched nodes from access in a split tree: split(x) moves x to root & deletes x, leaving 2 split trees in $O(1)$ amortized time ~ if fully split:
 - really: all n splits in $O(n)$ time (& make split tree on n items in $O(n)$)
 - 2-3-4 tree with min & max pointers can split into n' & n'' in $O(\log \min\{n', n''\}) + O(n)$ total merges
 - use potential $\Phi = \sum_{\text{split tree } T} (|T| - \log |T|)$

$\Rightarrow O(1)$ amortized search cost for split
- simulate with BST:
 interleaved min/max search

\Rightarrow BST is "treap of split trees", where heap order is by previous touch & ties mean in split tree (\Rightarrow optimal order)
- use proof similar to (\(\Leftarrow\)) above
- by ASS, when touching node in split tree, also touch predecessor & successor in parent split tree \Rightarrow cheap to reach