This material takes about 1.5 hours.

1 Suffix Trees

Weiner 73 “Linear Pattern-matching algorithms” IEEE conference on automata
and switching theory
McCreight 76 “A space-economical suffix tree construction algorithm” JACM
23(2) 1976
Chen and Seifras 85 “Efficient and Elegent Suffix tree construction” in Apos-
tolico/Galil Combninatorial Algorithms on Words
Another “search” structure, dedicated to strings.
Basic problem: match a “pattern” (of length m) to “text” (of length n)

- goal: decide if a given string (“pattern”) is a substring of the text
- possibly created by concatenating short ones, eg newspaper
- application in IR, also computational bio (DNA seqs)
- if pattern avilable first, can build DFA, run in time linear in text
- if text available first, can build suffix tree, run in time linear in pattern.
- applications in computational bio.

First idea: binary tree on strings. Inefficient because run over pattern many
times.

- fractional cascading?
- realize only need one character at each node!

Tries:

- Idea like bucket heaps: use bounded alphabet Σ.
- used to store dictionary of strings
- trees with children indexed by “alphabet”
- time to search equal length of query string
- insertion ditto.
- optimal, since even hashing requires this time to hash.
- but better, because no “hash function” computed.
- space an issue:
 - using array increases stroage cost by $|\Sigma|$
– using binary tree on alphabet increases search time by $\log |\Sigma|
– ok for “const alphabet”
– if really fussy, could use hash-table at each node.

• size in worst case: sum of word lengths (so pretty much solves “dictionary” problem.

But what about substrings?

• idea: trie of all n^2 substrings
• equivalent to trie of all n suffixes.
• put “marker” at end, so no suffix contained in other (otherwise, some suffix can be an internal node, “hidden” by piece of other suffix)
• means one leaf per suffix
• Naive construction: insert each suffix

• basic alg:
 – text $a_1 \cdots a_n$
 – define $s_i = a_i \cdots a_n$
 – for $i = 1$ to n
 – insert s_i
• time, space $O(n^2)$

Better construction:

• note trie size may be much smaller: $aaaaaa$a.
• algorithm with time $O(|T|)$
• idea: avoid repeated work by “memoizing”
• also shades of finger search tree idea—use locality of reference
• suppose just inserted aw
• next insert is w
• big prefix of w might already be in trie
• avoid traversing: skip to end of prefix.

Suffix links:

• any node in trie corresponds to string
• arrange for node corresp to ax to point at node corresp to x
• suppose just inserted aw.
• walk up tree till find suffix link
• follow link (puts you on path corresp to w)
• walk down tree (adding nodes) to insert rest of w

Memoizing: (save your work)
• can add suffix link to every node we walked up
• (since walked up end of aw, and are putting in w now).
• charging scheme: charge traversal up a node to creation of suffix link
• traversal up also covers (same length) traversal down
• once node has suffix link, never passed up again
• thus, total time spent going up/down equals number of suffix links
• one suffix link per node, so time $O(|T|)$

half hour up to here.
Amortization key principles:
• Lazy: don’t work till you must
• If you must work, use your work to “simplify” data structure too
• force user to spend lots of time to make you work
• use charges to keep track of work—earn money from user activity, spend it to pay for excess work at certain times.

Linear-size structure:
• problem: maybe $|T|$ is large (n^2)
• compress paths in suffix trie
• path on letters $a_i \cdots a_j$ corresp to substring of text
• replace by edge labelled by (i, j) (implicit nodes)
• Example: tree on $abab$
• gives tree where every node has indegree at least 2
• in such a tree, size is order number of leaves $= O(n)$
• terminating $\$ char now very useful, since means each suffix is a node
• Wait: didn’t save space; still need to store characters on edge!
• see if someone with prompting can figure out: characters on edge are substring of pattern, so just store start and end indices. Look in text to see characters.

Search still works:

• preserves invariant: at most one edge starting with given character leaves a node
• so can store edges in array indexed by first character of edge.
• walk down same as trie
• called “slowfind” for later

Construction:

• obvious: build suffix trie, compress
• drawback: may take n^2 time and intermediate space
• better: use original construction idea, work in compressed domain.
• as before, insert suffixes in order s_1, \ldots, s_n
• compressed tree of what inserted so far
• to insert s_i, walk down tree
• at some point, path diverges from what’s in tree
• may force us to “break” an edge (show)
• tack on one new edge for rest of string (cheap!)

MacReight 1976

• use suffix link idea of up-link-down
• problem: can’t suffix link every character, only explicit nodes
• want to work proportional to real nodes traversed
• need to skip characters inside edges (since can’t pay for them)
• introduced “fastfind”
 – idea: fast alg for descending tree if know string present in tree
 – just check first char on edge, then skip number of chars equal to edge “length”
 – may land you in middle of edge (specified offset)
 – cost of search: number of explicit nodes in path
Amortized Analysis:

- suppose just inserted string aw
- sitting on its leaf, which has parent
- Parent is only node that was (possibly) created by insertion:
 - As soon as walk down preexisting tree falls of tree, create parent node and stop
- invariant: every internal node except for parent of current leaf has suffix link to another explicit node
- plausible?
 - i.e., is there an explicit node for that suffix link to point at?
 - suppose v was created as parent of s_j leaf when it diverged from s_k
 - (note this is only way nodes get created)
 - claim s_{j+1} and s_{k+1} diverge at suffix(v), creating another explicit node.
 - only problem if s_{k+1} not yet present
 - happens only if k is current suffix
 - only blocks parent of current leaf.
- insertion step:
 - suppose just inserted s_i
 - consider parent p_i and grandparent (parent of parent) g_i of current node
 - g_i to p_i link has string w_1
 - p_i to s_i link w_2
 - go up to grandparent
 - follow suffix link (exists by invariant)
 - fastfind w_1
 - claim: know w_1 is present in tree!
 * p_i was created by s_i split from a previous edge (or preexisted)
 * so aww_1 was in tree before s_i inserted (prefix of earlier suffix)
 * so w_1w_1 is in tree after s_i inserted
 - create suffix link from p_i (preserves invariant)
 - slowfind w_2 (stopping when leave current tree)
 - break current edge if necessary (may land on preexisting node)
– add new edge for rest of w_2

Analysis:

• First, consider work to reach g_{i+1}
• Mix of fastfind and slowfind, but no worse then cost of doing pure slowfind
• This is it most $|g_{i+1}| - |g_i| + 1$ (explain length notation)
• So total is $O(\sum |g_{i+1}| - |g_i| + 1) = O(n)$
• Wait: maybe $g_{i+1} - g_i + 1 < 0$, and I am cheating on sum?
 – Note s_{i+1} is suffix of s_i
 – so g_i suffix link must point at g_{i+1} or above
 – so $|g_{i+1}| \geq |g_i| - 1$
• Remaining cost: to reach p_{i+1}.
 – If get there during fastfind, costs at most one additional step
 – If get there during slowfind, means slowfind stopped at or before g_i.
 – So suf(p_i) is not below g_{i+1}.
 – So remaining cost is $|g_{i+1}| - |p_{i+1}| \leq |\text{suf}(p_i)| - |p_{i+1}| \leq |p_i| - |p_{i+1}| + 1$
 – telescopes as before to $O(n)$
 – we mostly used slowfind. when was fastfind important?
 * in case when p_{i+1} was reached on fastfind step from g_{i+1}
 * in that case, could not have afforded to do slowfind
 * however, don’t know that the case occurred until after the fact.

Analysis:

• Break into three costs:
 – from suf(g_i) to g_{i+1} (part of fastfind w_1)
 – then g_{i+1} to suf(p_i) (part of fastfind w_1),
 – then suf(p_i) to p_{i+1} (slowfind w_2).
 – Note suf(g_i) might not be g_{i+1}!
• slowfind cost
 – is chars to get from suf(p_i) to p_{i+1} (plus const)
 – p_{i+1} is last internal node on path to s_{i+1}
 – so is descendant or equal suf(p_i),
 – so $|p_{i+1}| \geq |p_i| + 1$
 – so total cost $O(\sum |p_{i+1}| - |p_i| + 1) = O(n)$ by telescoping
– (explain length notation)

• fastfind to \(g_{i+1}\)
 – fastfind costs less than slowfind, so at most \(|g_{i+1}| - |g_i|\) to reach \(g_{i+1}\).
 – Sums to \(O(n)\).
 – Wait: maybe \(g_{i+1} - g_i + 1 < 0\), and I am cheating on sum?
 * Note \(p_i\) gets suffix link to internal node after \(s_{i+1}\) inserted
 * So \(g_i\) suffix is not last internal node on path to \(s_{i+1}\)
 * so \(g_i\) suffix link must point at \(g_{i+1}\) or above
 * so \(|g_{i+1}| \geq |g_i| - 1

• fastfind \(suf(p_i)\) from \(g_{i+1}\)
 – Already done if \(g_{i+1}\) below \(suf(p_i)\) (double counts, but who cares)
 – what if \(g_{i+1}\) above \(suf(p_i)\)?
 – can only happen if \(suf(p_i) = p_{i+1}\) (this is only node below \(g_{i+1}\))
 – in this case, fastfind takes 1 step to go from \(g_{i+1}\) to \(p_{i+1}\) (landing in middle of edge)
 – so \(O(1)\) per suffix at worst
 – only case where fastfind necessary, but can’t tell in advance.

Ukonnen online version.

Suffix arrays: many of same benefits as suffix trees, but save pointers:

• lexicographic ordering of suffixes

• represent as list of integers: \(b_1\) is (index in text of) lexicographically first suffix, \(b_2\) is (index of) lexicographically second, etc.

• search for pattern via binary search on this sequence

• some clever tricks (and some more space) let you avoid re-checking characters of pattern.

• So linear search (with additive \(\log m\) for binary search.

• space usage: \(3m\) integers (as opposed to numerous pointers and integers of suffix tree).

Applications:

• preprocess bottom up, storing first, last, num. of suffixes in subtree

• allows to answer queries: what first, last, count of \(w\) in text in time \(O(|w|)\).

• enumerate \(k\) occurrences in time \(O(w + |k|)\) (traverse subtree, binary so size order of number of occurences (compare to rabin-karp).

• longest common subsequence is probably on homework.