Graph-based Algorithms in NLP

Regina Barzilay
MIT
November, 2005
Graph-Based Algorithms in NLP

• In many NLP problems entities are connected by a range of relations

• Graph is a natural way to capture connections between entities

• Applications of graph-based algorithms in NLP:
 – Find entities that satisfy certain structural properties defined with respect to other entities
 – Find globally optimal solutions given relations between entities
Graph-based Representation

- Let $G(V, E)$ be a weighted undirected graph
 - V - set of nodes in the graph
 - E - set of weighted edges
- Edge weights $w(u, v)$ define a measure of pairwise similarity between nodes u, v
Graph-based Representation

```
  1 -> 2
    |    5
    | 55
  3   55
  4  50
  5

  1  2  3  4  5
  1  23  
  2 33 5
  3  
  4  55
  5  50
```
Examples of Graph-based Representations

<table>
<thead>
<tr>
<th>Data</th>
<th>Directed?</th>
<th>Node</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>yes</td>
<td>page</td>
<td>link</td>
</tr>
<tr>
<td>Citation Net</td>
<td>yes</td>
<td>citation</td>
<td>reference relation</td>
</tr>
<tr>
<td>Text</td>
<td>no</td>
<td>sent</td>
<td>semantic connectivity</td>
</tr>
</tbody>
</table>
Hubs and Authorities Algorithm (Kleinberg, 1998)

- **Application context**: information retrieval
- **Task**: retrieve documents relevant to a given query
- **Naive Solution**: text-based search
 - Some relevant pages omit query terms
 - Some irrelevant do include query terms

We need to take into account the authority of the page!
Analysis of the Link Structure

• **Assumption:** the creator of page p, by including a link to page q, has in some measure conferred authority in q

• **Issues to consider:**
 – some links are not indicative of authority (e.g., navigational links)
 – we need to find an appropriate balance between the criteria of relevance and popularity
Outline of the Algorithm

- Compute focused subgraphs given a query
- Iteratively compute hubs and authorities in the subgraph
Focused Subgraph

- Subgraph $G[W]$ over $W \subseteq V$, where edges correspond to all the links between pages in W

- How to construct G_σ for a string σ?
 - G_σ has to be relatively small
 - G_σ has to be rich in relevant pages
 - G_σ must contain most of the strongest authorities
Constructing a Focused Subgraph: Notations

Subgraph \((\sigma, Eng, t, d)\)

- \(\sigma\): a query string
- \(Eng\): a text-based search engine
- \(t, d\): natural numbers

Let \(R_\sigma\) denote the top \(t\) results of \(Eng\) on \(\sigma\)
Constructing a Focused Subgraph: Algorithm

Set $S_c := R_\sigma$

For each page $p \in R_\sigma$

Let $\Gamma^+(p)$ denote the set of all pages p points to
Let $\Gamma^-(p)$ denote the set of all pages pointing to p

Add all pages in $\Gamma^+(p)$ to S_σ

If $|\Gamma^-(p)| \leq d$ then

Add all pages in $|\Gamma^-(p)|$ to S_σ

Else

Add an arbitrary set of d pages from $|\Gamma^-(p)|$ to S_σ

End

Return S_σ
Constructing a Focused Subgraph
Computing Hubs and Authorities

- Authorities should have considerable overlap in terms of pages pointing to them
- Hubs are pages that have links to multiple authoritative pages
- Hubs and authorities exhibit a mutually reinforcing relationship
An Iterative Algorithm

- For each page p, compute authority weight $x^{(p)}$ and hub weight $y^{(p)}$
 - $x^{(p)} \geq 0$, $x^{(p)} \geq 0$
 - $\sum_{p \in s_\sigma} (x^{(p)})^2 = 1$, $\sum_{p \in s_\sigma} (y^{(p)})^2 = 1$
- Report top ranking hubs and authorities
I operation

Given \(\{ y^{(p)} \} \), compute:

\[
x^{(p)} \leftarrow \sum_{q: (q, p) \in E} y^{(p)}
\]

\(q_1 \) \(q_2 \) \(q_3 \)

page \(p \)
x[\(p \)]=sum of \(y[q] \)
for all \(q \) pointing to \(p \)
Given \(\{x^{(p)}\} \), compute:

\[
y^{(p)} \leftarrow \sum_{q: (p, q) \in E} x^{(p)}
\]

\[y[p] := \text{sum of } x[q]
\]

for all q pointed to by p
Algorithm: Iterate

Iterate \((G,k)\)

- **G**: a collection of \(n\) linked paged
- **k**: a natural number

Let \(z\) denote the vector \((1, 1, 1, \ldots, 1) \in \mathbb{R}^n\)

Set \(x_0 := z\)

Set \(y_0 := z\)

For \(i = 1, 2, \ldots, k\)

- Apply the I operation to \((x_{i-1}, y_{i-1})\), obtaining new \(x\)-weights \(x'_i\)
- Apply the O operation to \((x'_i, y_{i-1})\), obtaining new \(y\)-weights \(y'_i\)
- Normalize \(x'_i\), obtaining \(x_i\)
- Normalize \(y'_i\), obtaining \(y_i\)

Return \((x_k, y_k)\)
Algorithm: Filter

Filter \((G,k,c)\) \(G: \) a collection of \(n\) linked paged

\(k,c: \) natural numbers

\((x_k, y_k) := \text{Iterate}(G, k)\)

Report the pages with the \(c\) largest coordinates in \(x_k\) as authorities

Report the pages with the \(c\) largest coordinates in \(y_k\) as hubs
Convergence

Theorem: The sequence x_1, x_2, x_3 and y_1, y_2, y_3 converge.

- Let A be the adjacency matrix of g_σ
- Authorities are computed as the principal eigenvector of $A^T A$
- Hubs are computed as the principal eigenvector of AA^T
Subgraph obtained from www.honda.com

http://www.honda.com
Honda
http://www.ford.com
Ford Motor Company
http://www.eff.org/blueribbon.html
Campaign for Free Speech
http://www.mckinley.com
Welcome to Magellan!
http://www.netscape.com
Welcome to Netscape!
http://www.linkexchange.com
LinkExchange — Welcome
http://www.toyota.com
Welcome to Toyota
Authorities obtained from

www.honda.com

0.202 http://www.toyota.com Welcome to Toyota
0.199 http://www.honda.com Honda
0.192 http://www.ford.com Ford Motor Company
0.173 http://www.bmwusa.com BMW of North America, Inc.
0.162 http://www.bmwusa.com VOLVO
0.158 http://www.saturncars.com Saturn Web Site
0.155 http://www.nissanmotors.com NISSAN
PageRank Algorithm (Brin & Page, 1998)

Original Google ranking algorithm

- Similar idea to Hubs and Authorities

- Key differences:
 - Authority of each page is computed off-line
 - Query relevance is computed on-line
 - Anchor text
 - Text on the page
 - The prediction is based on the combination of authority and relevance
PageRank can be thought of as a model of used behaviour. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links never hitting “back” but eventually get bored and starts on another random page. The probability that the random surfer visits a page is its PageRank. And, the d damping factor is the probability at each page the “random surfer” will get bored and request another random page.
PageRank Computation

Iterate PR(p) computation:

- pages q_1, \ldots, q_n that point to page p
- d is a damping factor (typically assigned to 0.85)
- $C(p)$ is out-degree of p

$$PR(p) = (1 - d) + d \times \left(\frac{PR(q_1)}{C(q_1)} + \ldots + \frac{PR(q_n)}{C(q_n)} \right)$$
Notes on PageRank

- PageRank forms a probability distribution over web pages
- PageRank corresponds to the principal eigenvector of the normalized link matrix of the web
Extractive Text Summarization

Task: Extract important information from a text

Figure removed for copyright reasons. Screenshots of several website text paragraphs.
Text as a Graph
Centrality-based Summarization (Radev)

- Assumption: The centrality of the node is an indication of its importance.

- Representation: Connectivity matrix based on intra-sentence cosine similarity.

- Extraction mechanism:
 - Compute PageRank score for every sentence u
 \[
 \text{PageRank}(u) = \frac{(1 - d)}{N} + d \sum_{v \in \text{adj}[u]} \frac{\text{PageRank}(v)}{\text{deg}(v)}
 \]
 where N is the number of nodes in the graph.
 - Extract k sentences with the highest PageRanks score.
Does it work?

- Evaluation: Comparison with human created summary
- Rouge Measure: Weighted n-gram overlap (similar to Bleu)

<table>
<thead>
<tr>
<th>Method</th>
<th>Rouge score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.3261</td>
</tr>
<tr>
<td>Lead</td>
<td>0.3575</td>
</tr>
<tr>
<td>Degree</td>
<td>0.3595</td>
</tr>
<tr>
<td>PageRank</td>
<td>0.3666</td>
</tr>
</tbody>
</table>
Does it work?

- Evaluation: Comparison with human created summary
- Rouge Measure: Weighted n-gram overlap (similar to Bleu)

<table>
<thead>
<tr>
<th>Method</th>
<th>Rouge score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.3261</td>
</tr>
<tr>
<td>Lead</td>
<td>0.3575</td>
</tr>
<tr>
<td>Degree</td>
<td>0.3595</td>
</tr>
<tr>
<td>PageRank</td>
<td>0.3666</td>
</tr>
</tbody>
</table>
Graph-Based Algorithms in NLP

- Applications of graph-based algorithms in NLP:
 - Find entities that satisfy certain structural properties defined with respect to other entities
 - Find globally optimal solutions given relations between entities
Min-Cut: Definitions

- Graph cut: partitioning of the graph into two disjoint sets of nodes A, B
- Graph cut weight: $\text{cut}(A, B) = \sum_{u \in A, v \in B} w(u, v)$
 - i.e. sum of crossing edge weights
- Minimum Cut: the cut that minimizes cross-partition similarity
Finding Min-Cut

- The problem is polynomial time solvable for 2-class min-cut when the weights are positive
 - Use max-flow algorithm

- In general case, k-way cut is NP-complete.
 - Use approximation algorithms (e.g., randomized algorithm by Karger)

MinCut first used for NLP applications by Pang&Lee’2004 (sentiment classification)
Min-Cut for Content Selection

Task: Determine a subset of database entries to be included in the generated document

<table>
<thead>
<tr>
<th>TEAM STAT COMPARISON</th>
<th>Oakland Raiders</th>
<th>New England Patriots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Downs</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Total Yards</td>
<td>338</td>
<td>379</td>
</tr>
<tr>
<td>Passing</td>
<td>246</td>
<td>306</td>
</tr>
<tr>
<td>Rushing</td>
<td>92</td>
<td>73</td>
</tr>
<tr>
<td>Penalties</td>
<td>16-149</td>
<td>7-46</td>
</tr>
<tr>
<td>3rd Down Conversions</td>
<td>4-13</td>
<td>6-16</td>
</tr>
<tr>
<td>4th Down Conversions</td>
<td>0-0</td>
<td>0-1</td>
</tr>
<tr>
<td>Turnovers</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Possession</td>
<td>27:40</td>
<td>32:20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDIVIDUAL LEADERS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oakland Passing</th>
<th>New England Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/ATT</td>
<td>YDS</td>
</tr>
<tr>
<td>Collins</td>
<td>18/39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oakland Rushing</th>
<th>New England Rushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR</td>
<td>YDS</td>
</tr>
<tr>
<td>Jordan</td>
<td>18</td>
</tr>
<tr>
<td>Crockett</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oakland Receiving</th>
<th>New England Receiving</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC</td>
<td>YDS</td>
</tr>
<tr>
<td>Moss</td>
<td>5</td>
</tr>
<tr>
<td>Porter</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure by MIT OCW.
Suggs rushed for 82 yards and scored a touchdown in the fourth quarter, leading the Browns to a 17-13 win over the Washington Redskins on Sunday. Jeff Garcia went 14-of-21 for 195 yards and a TD for the Browns, who didn't secure the win until Coles fumbled with 2:08 left. The Redskins (1-3) can pin their third straight loss on going just 1-for-11 on third downs, mental mistakes and a costly fumble by Clinton Portis. “My fumble changed the momentum”, Portis said. Brunell finished 17-of-38 for 192 yards, but was unable to get into any rhythm because Cleveland’s defense shut down Portis. The Browns faked a field goal, but holder Derrick Frost was stopped short of a first down. Brunell then completed a 13-yard pass to Coles, who fumbled as he was being taken down and Browns safety Earl Little recovered.
Content Selection: Problem Formulation

- Input format: a set of entries from a relational database
 - “entry” = “raw in a database”

- Training: \(n \) sets of database entries with associated selection labels

<table>
<thead>
<tr>
<th></th>
<th>CAR</th>
<th>YDS</th>
<th>TD</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan</td>
<td>18</td>
<td>17</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Crockett</td>
<td>3</td>
<td>20</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

Figure by MIT OCW.

- Testing: predict selection labels for a new set of entries
Formulate content selection as a classification task:

- **Prediction:** \(\{1,0\} \)

- **Representation of the problem:**

<table>
<thead>
<tr>
<th>Player</th>
<th>YDS</th>
<th>LG</th>
<th>TD</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dillon</td>
<td>63</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Faulk</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Goal: Learn classification function \(P(Y|X) \) that can classify unseen examples

\[
X = \langle Smith, 28, 9, 1 \rangle \quad Y_1 = ?
\]
Potential Shortcoming: Lack of Coherence

- Sentences are classified in isolation
- Generated sentences may not be connected in a meaningful way

Example: An output of a system that automatically generates scientific papers (Stribling et al., 2005):

Active networks and virtual machines have a long history of collaborating in this manner. The basic tenet of this solution is the refinement of Scheme. The disadvantage of this type of approach, however, is that public-private key pair and red-black trees are rarely incompatible.
Enforcing Output Coherence

Sentences in a text are connected

The New England Patriots squandered a couple big leads. That was merely a setup for Tom Brady and Adam Vinatieri, who pulled out one of their typical last-minute wins. Brady threw for 350 yards and three touchdowns before Vinatieri kicked a 29-yard field goal with 17 seconds left to lead injury-plagued New England past the Atlanta Falcons 31-28 on Sunday.

Simple classification approach cannot enforce coherence constraints
Constraints for Content Selection

Collective content selection: consider all the entries simultaneously

- **Individual constraints:**

 | 3 | Branch scores TD | 7 | 10 |

- **Contextual constraints:**

 | 3 | Brady passes to Branch | 7 | 3 |
 | 3 | Branch scores TD | 7 | 10 |
Individual Preferences

Y
M
N

ind entries

0.8
0.2
0.2
0.8

0.5
0.5
0.5

0.1
0.9
0.9
0.1
Combining Individual and Contextual Preferences

![Diagram showing relationships between Y, M, and N with probabilities labeled on the connections.]
Collective Classification

\[
x \in C_+ \quad \text{selected entities}
\]
\[
ind_+(x) \quad \text{preference to be selected}
\]
\[
link_L(x_i, x_j) \quad x_i \text{ and } x_j \text{ are connected by link of type } L
\]

Minimize penalty:

\[
\sum_{x \in C_+} ind_-(x) + \sum_{x \in C_-} ind_+(x) + \sum_{L} \sum_{x_i \in C_+} \sum_{x_j \in C_-} link_L(x_i, x_j)
\]

Goal: Find globally optimal label assignment
Optimization Framework

\[
\sum_{x \in C_+} \text{ind}_-(x) + \sum_{x \in C_-} \text{ind}_+(x) + \sum_{L} \sum_{\substack{x_i \in C_+ \cr x_j \in C_-}} \text{link}_L(x_i, x_j)
\]

- Seemingly intractable
- Can be solved exactly in polynomial time (scores are positive) (Greig et al., 1989)
Graph-Based Formulation

Use max-flow to compute minimal cut partition
- Learning individual preferences
- Learning link structure
Learning Individual Preferences

- Map attributes of a database entry to a feature vector

<table>
<thead>
<tr>
<th></th>
<th>CAR</th>
<th>YDS</th>
<th>TD</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oakland Rushing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td>18</td>
<td>17</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Crockett</td>
<td>3</td>
<td>20</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

X=<Jordan, 18, 17, 0, 14>, Y=1
X=<Crockett, 3, 20, 8, 19>, Y=0

- Train a classifier to learn $D(Y|X)$
Contextual Constraints: Learning Link Structure

- Build on rich structural information available in database schema
 - Define entry links in terms of their database relatedness

 \textit{Players from the winning team that had touchdowns in the same quarter}

- Discover links automatically
 - Generate-and-prune approach
Construction of Candidate Links

- Link space:
 - Links based on attribute sharing

- Link type template:
 create \(L_{i,j,k} \) for every entry type \(E_i \) and \(E_j \), and for every shared attribute \(k \)

\[
E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{Name}
\]

\[
E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{TD}
\]
Link Filtering

\[E_i = \text{Rushing}, \quad E_j = \text{Passing}, \quad \text{and} \quad k = \text{Name} \]

\[E_i = \text{Rushing}, \quad E_j = \text{Passing}, \quad \text{and} \quad k = \text{TD} \]

<table>
<thead>
<tr>
<th>New England Passing</th>
<th>New England Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C/ATT</td>
</tr>
<tr>
<td>T. Brady</td>
<td>24/38</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Team</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New England Rushing</th>
<th>New England Rushing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAR</td>
</tr>
<tr>
<td>C. Dillon</td>
<td>23</td>
</tr>
<tr>
<td>K. Faulk</td>
<td>5</td>
</tr>
<tr>
<td>T. Brady</td>
<td>3</td>
</tr>
<tr>
<td>Team</td>
<td>31</td>
</tr>
</tbody>
</table>

Figure by MIT OCW.
$E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{Name}$

$E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{TD}$

<table>
<thead>
<tr>
<th>New England Passing</th>
<th>C/ATT</th>
<th>YDS</th>
<th>AVG</th>
<th>TD</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Brady</td>
<td>24/38</td>
<td>306</td>
<td>8.1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New England Rushing</th>
<th>CAR</th>
<th>YDS</th>
<th>AVG</th>
<th>TD</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Dillon</td>
<td>23</td>
<td>63</td>
<td>2.7</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>K. Faulk</td>
<td>5</td>
<td>11</td>
<td>2.2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>T. Brady</td>
<td>3</td>
<td>-1</td>
<td>-0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Team</td>
<td>31</td>
<td>73</td>
<td>2.4</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure by MIT OCW.
Link Filtering

\(E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{Name} \)

\(E_i = \text{Rushing}, \ E_j = \text{Passing}, \ \text{and} \ k = \text{TD} \)

Measure similarity in label distribution using \(\chi^2 \) test

- Assume \(H_0 \): labels of entries are independent
- Consider the joint label distribution of entry pairs from the training set
- \(H_0 \) is rejected if \(\chi^2 > \tau \)
Collective Content Selection

- **Learning**
 - Individual preferences
 - Link structure

- **Inference**
 - Minimal Cut Partitioning
Data

- Domain: American Football
- Data source: the official site of NFL
- Corpus: AP game recaps with corresponding databases for 2003 and 2004 seasons
 - Size: 468 recaps (436,580 words)
 - Average recap length: 46.8 sentences
Data: Preprocessing

- Anchor-based alignment (Duboue & McKeown, 2001, Sripada et al., 2001)
 - 7,513 aligned pairs
 - 7.1% database entries are verbalized
 - 31.7% sentences had a database entry

- Overall: 105,792 entries
 - Training/Testing/Development: 83%, 15%, 2%
Results: Comparison with Human Extraction

- Precision (P): the percentage of extracted entries that appear in the text
- Recall (R): the percentage of entries appearing in the text that are extracted by the model
- F-measure: \[F = 2 \frac{PR}{(P+R)} \]

<table>
<thead>
<tr>
<th>Method</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Methods</td>
<td>29.4</td>
<td>68.19</td>
<td>40.09</td>
</tr>
<tr>
<td>Class Majority Baseline</td>
<td>44.88</td>
<td>62.23</td>
<td>49.75</td>
</tr>
<tr>
<td>Standard Classifier</td>
<td>52.71</td>
<td>76.50</td>
<td>60.15</td>
</tr>
</tbody>
</table>
Summary

- Graph-based Algorithms: Hubs and Authorities, Min-Cut
- Applications: information Retrieval, Summarization, Generation