Cell Injury, Adaptation and Death

HST.035
Spring 2003
Overview of Cell Injury

- Cells actively control the composition of their immediate environment and intracellular milieu within a narrow range of physiological parameters ("homeostasis").

- Under physiological stresses or pathological stimuli ("injury"), cells can undergo adaptation to achieve a new steady state that would be compatible with their viability in the new environment.

- If the injury is too severe ("irreversible injury"), the affected cells die.
Causes of Cell Injury

- Hypoxia and ischemia
- “Chemical” agents
- “Physical” agents
- Infections
- Immunological reactions
- Genetic defects
- Nutritional defects
- Aging

Hypoxia (oxygen deficiency) and ischemia (blood flow deficiency)
“Chemical” agents: including drugs and alcohol
“Physical” agents: including trauma and heat
Infections
Immunological reactions: including anaphylaxis and loss of immune tolerance that results in autoimmune disease
Genetic defects: hemoglobin S in SS disease, inborn errors of metabolism
Nutritional defects: including vitamin deficiencies, obesity leading to type II DM, fat leading to atherosclerosis
Aging: including degeneration as a result of repeated trauma, and intrinsic cellular senescence
Mechanisms of Cell Injury: General Principles

• Cell response to injury is not an all-or-nothing phenomenon

• Response to a given stimulus depends on the type, status, and genetic make-up of the injured cell

• Cells are complex interconnected systems, and single local injuries can result in multiple secondary and tertiary effects

• Cell function is lost far before biochemical and subsequently morphological manifestations of injury become detectable

Cell response to injury is not an all-or-nothing phenomenon: The stronger and the longer the stimulus, the larger the damage
Response to a given stimulus depends on the type, status, and genetic make-up of the injured cell: Contrast ischemia in skeletal muscle (tolerates 2 hours) versus cardiac muscle (tolerate 20 minutes); contrast neurons and glia.
Cells are complex interconnected systems, and single local injuries can result in multiple secondary and tertiary effects: Cyanide indirectly affects osmotic regulation by loss of function of Na/K-ATPase
Cell function is lost far before biochemical and subsequently morphological manifestations of injury become detectable: This has big implications for the use of pathology as gold standard for evaluation of new technologies that could detect changes before they are morphologically apparent
1. Loss of energy (ATP depletion, O₂ depletion)

Cytosolic free calcium is 10,000 times lower than extracellular calcium or sequestered intracellular calcium. Increase in cytosolic calcium can result in activation of phospholipases (membrane damage), proteases, ATPases, and endonucleases.

Increase in cytosolic calcium, oxidative stress, and lipid breakdown products result in formation of high-conductance channels in inner mitochondrial membranes ("mitochondrial permeability transition") that result in loss of proton gradient. Cytochrome C can also leak into the cytosol, activating apoptotic pathways.
General Biochemical Mechanisms

1. Loss of energy (ATP depletion, O_2 depletion)
2. Mitochondrial damage (“permeability transition”)

Cytosolic free calcium is 10,000 times lower than extracellular calcium or sequestered intracellular calcium. Increase in cytosolic calcium can result in activation of phospholipases (membrane damage), proteases, ATPases, and endonucleases.

Increase in cytosolic calcium, oxidative stress, and lipid breakdown products result in formation of high-conductance channels in inner mitochondrial membranes (“mitochondrial permeability transition”) that result in loss of proton gradient. Cytochrome C can also leak into the cytosol, activating apoptotic pathways.
General Biochemical Mechanisms

1. Loss of energy (ATP depletion, O$_2$ depletion)
2. Mitochondrial damage
3. Loss of calcium homeostasis

Cytosolic free calcium is 10,000 times lower than extracellular calcium or sequestered intracellular calcium. Increase in cytosolic calcium can result in activation of phospholipases (membrane damage), proteases, ATPases, and endonucleases.

Increase in cytosolic calcium, oxidative stress, and lipid breakdown products result in formation of high-conductance channels in inner mitochondrial membranes (“mitochondrial permeability transition”) that result in loss of proton gradient. Cytochrome C can also leak into the cytosol, activating apoptotic pathways.
General Biochemical Mechanisms

1. Loss of energy (ATP depletion, O_2 depletion)
2. Mitochondrial damage
3. Loss of calcium homeostasis
4. Defects in plasma membrane permeability

Cytosolic free calcium is 10,000 times lower than extracellular calcium or sequestered intracellular calcium. Increase in cytosolic calcium can result in activation of phospholipases (membrane damage), proteases, ATPases, and endonucleases.

Increase in cytosolic calcium, oxidative stress, and lipid breakdown products result in formation of high-conductance channels in inner mitochondrial membranes (“mitochondrial permeability transition”) that result in loss of proton gradient. Cytochrome C can also leak into the cytosol, activating apoptotic pathways.
General Biochemical Mechanisms

1. Loss of energy (ATP depletion, O₂ depletion)
2. Mitochondrial damage
3. Loss of calcium homeostasis
4. Defects in plasma membrane permeability
5. Generation of reactive oxygen species (O₂•, H₂O₂, OH•) and other free radicals

Cytosolic free calcium is 10,000 times lower than extracellular calcium or sequestered intracellular calcium. Increase in cytosolic calcium can result in activation of phospholipases (membrane damage), proteases, ATPases, and endonucleases.

Increase in cytosolic calcium, oxidative stress, and lipid breakdown products result in formation of high-conductance channels in inner mitochondrial membranes (“mitochondrial permeability transition”) that result in loss of proton gradient. Cytochrome C can also leak into the cytosol, activating apoptotic pathways.
Free Radicals

- Free radicals are chemical species with a single unpaired electron in an outer orbital
- Free radicals are chemically unstable and therefore readily react with other molecules, resulting in chemical damage
- Free radicals initiate autocatalytic reactions; molecules that react with free radicals are in turn converted to free radicals
Intracellular Sources of Free Radicals

• Normal redox reactions generate free radicals

• Nitric oxide (NO) can act as a free radical

• Ionizing radiation (UV, X-rays) can hydrolyze water into hydroxyl (OH•) and hydrogen (H•) free radicals

• Metabolism of exogenous chemicals such as CCl₄ can generate free radicals

• Free radical generation is a “physiological” antimicrobial reaction
Neutralization of Free Radicals

1. Spontaneous decay
2. Superoxide dismutase (SOD):
 \[2O_2^\bullet + 2H \rightarrow O_2 + H_2O_2 \]
3. Glutathione (GSH):
 \[2OH^\bullet + 2GSH \rightarrow 2H_2O + GSSG \]
4. Catalase:
 \[2H_2O_2 \rightarrow O_2 + H_2O \]
5. Endogenous and exogenous antioxidants (Vitamins E, A, C and β-carotene)
Free Radical-Induced Injury

- If not adequately neutralized, free radicals can damage cells by three basic mechanisms:

 1. **Lipid peroxidation of membranes**: double bonds in polyunsaturated membrane lipids are vulnerable to attack by oxygen free radicals

 2. **DNA fragmentation**: Free radicals react with thymine in nuclear and mitochondrial DNA to produce single strand breaks

 3. **Protein cross-linking**: Free radicals promote sulfhydryl-mediated protein cross-linking, resulting in increased degradation or loss of activity
“Reperfusion” Damage

• If cells are *reversibly* injured due to ischemia, restoration of blood flow can paradoxically result in accelerated injury.

• Reperfusion damage is a clinically important process that significantly contributes to myocardial and cerebral infarctions

• Exact mechanisms are unclear, but
 – Restoration of flow may expose compromised cells to high concentrations of calcium, and
 – Reperfusion can result in increase free radicals production from compromised mitochondria and the circulating inflammatory cells
Chemical Injury

- Direct damage such as binding of mercuric chloride to sulfhydryl groups of proteins

- Generation of toxic metabolites such as conversion of CCl_4 to $\text{CCl}_3 \cdot$ free radicals in the SER of the liver
Cellular Adaptation to Injury

- Cellular adaptations can be induced and/or regulated at any of a number of regulatory steps including receptor binding, signal transduction, gene transcription or protein synthesis.

- The most common morphologically apparent adaptive changes are:
 - **Atrophy** (decrease in cell size)
 - **Hypertrophy** (increase in cell size)
 - **Hyperplasia** (increase in cell number)
 - **Metaplasia** (change in cell type)
Atrophy

- Atrophy is the shrinkage in cell size by *loss of cellular substance*
- With the involvement of a sufficient number of cells, an entire organ can become *atrophic*
- Causes of atrophy include decreased workload, pressure, diminished blood supply or nutrition, loss of endocrine stimulation, and aging
- Mechanisms of atrophy are not specific, but atrophic cells usually contain increased *autophagic vacuoles* with persistent residual bodies such as *lipofuscin*
Brain Atrophy

Hypertrophy

- Hypertrophy is an increase in cell size by *gain of cellular substance*
- With the involvement of a sufficient number of cells, an entire organ can become *hypertrophic*
- Hypertrophy is caused either by increased functional demand or by specific endocrine stimulations
- Not only the size, but also the phenotype of individual cells can be altered in hypertrophy
- With increasing demand, hypertrophy can reach a limit beyond which degenerative changes and organ failure can occur
Cardiac Hypertrophy

Hyperplasia

- Hyperplasia constitutes an increase in the number of indigenous cells in an organ or tissue
- Pathological hyperplasia is typically the result of excessive endocrine stimulation
- Hyperplasia is often a predisposing condition to neoplasia
Metaplasia

- Metaplasia is a “reversible” change in which one adult cell type is replaced by another adult cell type.
- Metaplasia is a cellular adaptation in which indigenous cells are replaced by cells that are better suited to tolerate a specific abnormal environment.
- Because of metaplasia, normal protective mechanisms may be lost.
- Persistence of signals that result in metaplasia often lead to neoplasia.
Barrett’s Esophagus

Intestinal Metaplasia of the Esophagus
Subcellular Responses to Cell Injury

- Autophagic vacuoles
- Induction/hypertrophy of RER
- Abnormal mitochondria
- Cytoskeletal abnormalities
Intracellular Storage

- Abnormal Metabolism
- Protein Folding, Transport
- Lack of Enzyme
- Ingestion of Indigestible Materials
Fatty Liver

Normal Liver

Steatosis
Pathologic Calcification

- **Dystrophic calcification** is the abnormal deposition of calcium phosphate in dead or dying tissue
- Dystrophic calcification is an important component of the pathogenesis of atherosclerotic disease and valvular heart disease
- **Metastatic calcification** is calcium deposition in normal tissues as a consequence of hypercalcemia:
 - Increased PTH with subsequent bone resorption
 - Bone destruction
 - Vitamin D disorders (intoxication, Sarcoidosis, Williams syndrome)
 - Renal failure with $2^\circ \, \uparrow$PTH
Coagulative Necrosis vs. Apoptosis

<table>
<thead>
<tr>
<th>Coagulation Necrosis</th>
<th>Apoptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimuli</td>
<td></td>
</tr>
<tr>
<td>Hypoxia, toxins</td>
<td>Physiologic and pathologic factors</td>
</tr>
<tr>
<td>Histologic appearance</td>
<td></td>
</tr>
<tr>
<td>Cellular swelling</td>
<td>Single cells</td>
</tr>
<tr>
<td>Coagulation necrosis</td>
<td>Chromatin condensation</td>
</tr>
<tr>
<td>Disruption of organelles</td>
<td>Apoptotic bodies</td>
</tr>
<tr>
<td>DNA breakdown</td>
<td></td>
</tr>
<tr>
<td>Random, diffuse</td>
<td>Internucleosomal</td>
</tr>
<tr>
<td>Mechanisms</td>
<td></td>
</tr>
<tr>
<td>ATP depletion</td>
<td>Gene activation</td>
</tr>
<tr>
<td>Membrane injury</td>
<td>Endonucleases</td>
</tr>
<tr>
<td>Free radical damage</td>
<td>Proteases</td>
</tr>
<tr>
<td>Tissue reaction</td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td>No inflammation</td>
</tr>
<tr>
<td></td>
<td>Phagocytosis of apoptotic bodies</td>
</tr>
</tbody>
</table>
Highlight of Events in Apoptosis