Gastrointestinal Neoplasms
Neoplastic Diseases of the Stomach

• Mucosal polyps
 – Hyperplastic (regenerative) polyps
 – Cystic fundic gland polyp
 – Inflammatory fibroid polyp
 – Polyposis syndromes
 – Adenomas

• Gastric adenocarcinoma
 – Variants: Adenosquamous; lymphoepithelial; hepatoid; parietal cell

• Neuroendocrine tumors
• Stromal tumors
• Lymphomas
Overview of the Lecture

• Epithelial tumors
 – Epithelial polyps
 – Colorectal ACA
 – Gastric ACA
 – Esophageal ACA
 – Esophageal SCC
• Neuroendocrine tumors
• Lymphomas
• Gastrointestinal stromal tumors
The Art of Terminology!

- A **tumor** is a mass lesion without reference to tissue composition or malignant potential

- GI tumors typically present as protrusions of mucosal tissue into the lumen (**polyps**); Polyps may have a broad base (**sessile polyps**) or be attached to the wall by a stalk (**pedunculated polyps**)

- Over the years, the term tumor has *almost* become synonymous with a **neoplastic growth**
The Art of Terminology

• A neoplasm is the new (new onset) growth (overgrowth) of a specific cell or tissue type, which may or may not form a tumor

• Based on their natural history, neoplasms may be benign, malignant, or locally aggressive

• If the new growth consists of benign indigenous cell or tissue elements, it may be called a hamartoma or a hyperplasia
The Art of Terminology

- In the GI tract, dysplasia implies the presence of pre-malignant epithelial abnormalities (this is not necessarily true for other organs)
- Dysplasia has a cytological spectrum from mild to severe (or from low-grade to high-grade)
- Carcinoma indicates the presence of severe dysplasia, which may be confined by the basement membrane (carcinoma-in-situ) or invade through the basement membrane (invasive carcinoma)
Epithelial Polyps

- Inflammatory polyps
 - Inflammatory (pseudo)polyps
 - Sporadic juvenile polyps
- Hamartomatous polyps
 - Juvenile polyposis syndrome
 - Peutz-Jeghers syndrome
- Hyperplastic polyps
- Adenomas
Juvenile Polyps and Polyposis

- Juvenile polyps consist of abnormal epithelial glands nested in an inflammatory background.
- Sporadic polyps (also called *retention polyps*) are typically found in the rectosigmoid of children presenting with blood in stools.
- Juvenile polyposis syndrome may be sporadic or familial (AD) and is associated with an increased risk of ACA and extraintestinal manifestations.
Hamartomatous Polyps

• Polyps consist of indigenous epithelial elements with an arborizing muscular framework and little to no inflammation

• Peutz-Jeghers syndrome is an AD disease with gastrointestinal hamartomatous polyps and mucocutaneous pigmented macules

• Molecular defect: STK11/LKB1 gene (serine-threonine kinase)

• PJS patients have an increased risk of gastro-intestinal neoplasms and neoplasms of many other organs including ovaries, testes, cervix, breast, thyroid, biliary tree, and urogenital tract
Hyperplastic Polyps

- The most common type of colorectal polyp
- Hyperplastic polyps are typically small and sessile protrusions of “hypermature” colonic epithelium with little inflammation and no muscular component
- Large hyperplastic polyps are much less common, but may be associated with an increased risk of dysplasia and ACA
- “Serrated neoplasia pathway” - methylation silencing of tumor suppressor genes
Adenomas

- Adenomas are benign but dysplastic epithelial neoplasms of the GI tract
- Adenomas are common lesions, occurring in 25-50% of individuals over the age of 60
- Most adenomas (~90%) are colonic
- Most colonic adenomas (~75%) are in the rectosigmoid
- Most adenomas (~75%) are single
Classification of Adenomas

- Adenomas are divided into three types based on their glandular architecture
 - Tubular (most common)
 - Villous (least common)
 - Tubulovillous
- The above three types are histological variants of the same neoplastic process
Familial Adenomatous Polyposis

- AD disease characterized by progressive development of hundreds of adenomatous polyps (primarily colonic)
- Incidence of 1 in 10,000 live births
- Inherited in 80% of cases
- Associated with 100% risk of ACA
- Associated with mutations of APC gene (5q21)
APC Genotype-FAP Phenotype Associations

- Mutations in exons 3, 4, and distal 15 are associated with *Attenuated FAP* (also known as *Flat Adenoma Syndrome*)
- Mutations in codons 1309/1328 of exon 15 are associated with an early aggressive FAP
- Mutations in distal portion of exon 15 are weakly associated with *Gardner’s Syndrome* (FAP + desmoids + osteomas + other)
- Mutations between exons 9 and 15 are associated with CHRPE
The APC Gene

- APC is a basolateral membrane protein that functions as a tumor suppressor protein presumably through interactions with β-catenin (a cytoskeletal protein that can exert a suppressive effect on cellular proliferation through the Wnt signaling pathway).

- Numerous mutations of the APC gene have been described in FAP; Somatic APC mutations are critical in sporadic colorectal carcinogenesis.
APC Gene in Colorectal Carcinogenesis

- **Normal Epithelium**
 - APC gene (5q loss or mutation)

- **Proliferative Epithelium**
 - Methylation Abnormalities

- **Early Adenoma**
 - k-Ras gene (12p mutation)

- **Intermediate Adenoma**
 - DCC/SMAD (18q loss)

- **Late Adenoma**
 - p53 gene (17p loss)

- **Invasive Carcinoma**
 - Other mutations

- **Metastases**
Genomic Instability in CRC

- **Chromosomal instability** (majority of CRCs): Allelic losses, translocations, and other gross chromosomal abnormalities in key regulatory proteins

- **Microsatellite instability** (minority of CRCs): Increased intragenic mutations due to instability of short tandemly repeated DNA sequences (microsatellites)
Microsatellite Instability (MSI)

- Nucleotide mismatches that “normally” occur when DNA polymerase inserts the wrong base in the newly synthesized DNA are typically repaired by mismatch repair enzymes.
- Defects in the process of mismatch repair lead to MSI (instability in >40% of loci).
- Mutations in DNA mismatch repair (MMR) genes (primarily MSH2 & MLH1) are found in sporadic CRCs with MSI and in families with HNPCC.
Modified from Fishel et al
Cancer Research 61:7369;2001
Hereditary Non-Polyposis Colorectal Cancer

| Original International Collaborative Group criteria (the Amsterdam Criteria) | 1. Three relatives with colorectal cancer (CRC), one a first-degree relative of the other two
2. CRC involving at least 2 generations
3. ≥1 CRC diagnosed before the age of 50y |
| --- | --- |
| Modified Amsterdam Criteria | • In very small families:
1. Two CRC's in first-degree relatives
2. CRC involving at least 2 generations
3. ≥1 CRC diagnosed before the age of 50y
• In families with 2 first-degree relatives affected by CRC, the presence of a third relative with an unusually early onset of CRC or endometrial cancer |
| NCI Workshop (Bethesda Guidelines) | • Cancer in families that fulfill Amsterdam criteria
• Two HNPCC-related cancers
• CRC or endometrial cancer before the age of 45
• CRC and a first-degree relative with CRC and/or HNPCC-related cancer and/or colorectal adenoma; one of the cancers before the age of 45 and adenoma before the age of 40
• Right-sided CRC with "undifferentiated" histology before the age of 45
• Signet-ring-cell-type CRC before the age of 45
• Adenomas before the age of 40 |
Colorectal Adenocarcinoma (CRC)

- In 1999, CRC was the third most common carcinoma and the third leading cause of cancer deaths in the US
- Greater than 130,000 new cases per year
- Rare before the age of 40
- M:F ratio of 1 (but ~2 for rectal cancers)
- Risk factors: ? environmental, ? diet
- Five-year survival ~65% in 1994
Pathology of CRC

• Most CRCs are in the rectosigmoid

• Left-sided tumors tend to produce “napkin-ring” lesions and present with obstruction

• Right-sided tumors tend to be large and centrally necrotic polypoid masses

• Most tumors are gland-forming and well- to moderately-differentiated; ~10% are mucinous

• Survival generally related to depth of invasion, nodal status, and metastases
Gastric adenocarcinoma

- Worldwide variation in incidence (e.g. high in Japan)
- Incidence falling in U.S. over last 50 years
- Most common 50-70 years, M>F
- Causative factors:
 - dietary carcinogens
 - familial
 - chronic inflammatory conditions
- Aggressive tumors with poor prognosis (15% 5 year survival)
Genetic Progression in Gastric Neoplasia

- C-met/HGF amplification/overexpression
- 9p21 deletion/p16 inactivation
- 19q12 amplification/Cyclin E overexpression
- 18q deletion
- 16q22 deletion/E-cadherin loss
- Chromosomal deletions (1p, 1q, 7q, 13q)

- 5q21 deletion/APC inactivation
- 17p13 deletion/p53 mutation
- MLH1 methylation

Normal → Metaplasia → Dysplasia → AdenoCa
Gastric carcinoma- pathology

• Location: antrum (70%) > lesser curvature, cardia (25%) > diffuse (5%)
• Gross configuration: polypoid, ulcerating, or infiltrating
• Intestinal type: gland formation, associated with intestinal metaplasia, dysplasia
• Diffuse type: signet ring cells, arises directly from surface foveolar cells, not associated with environmental factors
Esophageal carcinomas

- Two major types
 - Squamous cell carcinoma
 - Adenocarcinoma

- Squamous cell carcinoma more common worldwide
- Incidence of adenocarcinomas rising in U.S., Western Europe, now accounts for 50% of esophageal malignancies in those regions
Esophageal adenocarcinoma

- Peak age 60-70 years, M>>F
- Symptoms: dysphagia, weight loss
- Arises in setting of Barrett’s esophagus (columnar metaplasia with goblet cells) in distal esophagus
- Proceeds through dysplasia-carcinoma sequence
- Microscopically similar to adenocarcinomas elsewhere in GI tract
- Aggressive tumors; key to survival is early detection
Esophageal squamous cell carcinoma

- Incidence highest in Africa, Iran, China
- Peak age: 55-65 years, M>F
- Causative factors
 - Alcohol, tobacco
 - Corrosive esophagitis
 - Achalasia
 - ?HPV
- Symptoms: dysphagia, weight loss
- Aggressive tumors (10% 5 year survival)
Neuroendocrine (carcinoid) tumors

- Arise from neuroendocrine cells of gastrointestinal mucosa and its derivatives (e.g. lung, pancreas)
- Variable clinical behavior but often slow-growing
- Appendix most common site (35%) followed by ileum (20%)
- Pathology: uniform cells with round nuclei, “salt and pepper” chromatin
- Extra-appendiceal carcinoids frequently invade wall, metastasize
Carcinoid syndrome

- Only develops in patients with liver metastases
- Tumors elaborate serotonin, plus histamine, others
- Flushing, diarrhea, bronchoconstriction, valvular changes in right heart
- Treatment: removal or ablation of metastasis or antagonism/suppression of circulating serotonin
GI tract lymphomas

- Nearly all non-Hodgkin’s lymphomas (NHL)
- GI tract involved in 70% of patients with NHL
- Stomach most common site, followed by intestine and colon
- Nearly all B cell type, except for enteropathy associated T cell lymphoma (a/w celiac disease)
- **MALT lymphoma**: gastric lymphomas develop in setting of H. pylori infection (potentially treatable by H. pylori eradication)
Gastrointestinal stromal tumors (GISTs)

- Spindle cell neoplasms arising from interstitial cells of Cajal (pacemaker cells)
- Most associated with activating mutations in c-kit tyrosine kinase; sensitive to treatment with inhibitor (Gleevec)
- Variable aggressiveness
- Prognostic factors: size, location, histologic grade
- Distinguish leiomyomas (true neoplasms of smooth muscle)
Other tumors

- Adenocarcinoma of small intestine, appendix
- Anal squamous cell carcinoma
- Mesotheliomas od peritoneum
- Melanoma (rectum, anus, esophagus)
- Lipoma (colon, stomach)
- Kaposi’s sarcoma