Random Signals
(statistics and signal processing)

Primary Concepts for Random Processes

You should understand...

• Random processes as a straightforward extension of
 random variables.
• What is meant by a realization and an ensemble.
• The importance of stationarity and ergodicity
 - Useful for estimating statistical properties of random
 processes.
• Some idea of how the autocorrelation/autocovariance
 functions describe the statistical structure of a random
 signal.
Random Processes

- A random process, X, is an infinite-dimensional random variable.
 - If the size (dimension) is *countably* infinite then we have a **discrete-time** random process.
 - If the size (dimension) is *uncountably* infinite then we have a **continuous-time** random process.
- As with any multi-dimensional random variable we can
 - compute marginal and conditional statistics/densities over subsets of the dimensions.
- Random processes are interesting/tractable when there is some **structure** to the statistical relationships between various dimensions (i.e. the structure lends itself to analysis).
- We’ll focus primarily on second-order statistical properties.

Some Notation

- Let X denote a random process which can be thought of as the ensemble (or set) of all realizations
 \[X = \{ x[n] \} \]
- A single realization (a sample from the ensemble) can be denoted by:
 \[x[n] \]
- $x[45]$ - is a random variable, which represents the 45th sample over the ensemble
- \([x[2], x[11]] \) - is a two-dimensional random variable, comprised of the 2nd and 11th samples over the ensemble.
- When analyzing random processes, we are interested in the statistical properties of (potentially) all such combinations.
Realization vs. Ensemble

- Top plot: a single realization drawn from the ensemble.
- Bottom plot: many realizations drawn from the ensemble.
- An ensemble is characterized by the set of all realizations.
- An important question: When can one infer the statistical properties of the ensemble from the statistical properties of a single realization?

Relationship to Earlier Material

\[x[n] \xrightarrow{H(f)} y[n] \]

What, if anything, can we say about \(y[n] \) when:
- \(H(f) \) is LTI/LSI
- \(x[n] \) is a random process

(Random Processes and Linear Systems)
Relationship to Earlier Material

What, if anything, can we say about $y[n]$ when:
- $H(f)$ is LTI/LSI
- $w[n]$ is a random process
- $s[n]$ is a deterministic signal or random process

(Wiener Filtering)

Noise reduction with Wiener Filtering

• Left channel
• Right channel
• Wiener (left)
• Wiener (right)

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Important Concepts

Stationarity
Do the statistical properties of the random process vary or remain constant over time?

Ergodicity
Do time-averages over a single realization approach statistical expectations over the ensemble?

Autocorrelation Function
A function which describes the 2nd order statistical properties of a random process.

Crosscorrelation Function
A function which describes the 2nd order statistical relationships between two random processes.

Three Example Random Processes

We’ll consider three random processes which illustrate concepts we are interested in.

Notation Reminder
• Samples are drawn from a PDF.
 \[x[n] \sim p_X(x) \]
• Samples are drawn from a PDF with parameters, \(\alpha \).
 \[x[n] \sim p(x; \alpha) \]
• Samples are drawn from a Gaussian PDF with mean \(\mu \) and variance \(\sigma^2 \).
 \[x[n] \sim N(x; \mu, \sigma^2) \]

• I.I.D. Gaussian
 \[x[n] \sim N(x; 0, \sigma^2) \]

• Gaussian Random Walk
 \[y[n] = y[n-1] + x[n] \]
 \[x[n] \sim N(x; 0, \sigma^2) \]

• Smoothed Gaussian
 \[y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \]
 \[x[n] \sim N(x; 0, \sigma^2) \]
Some tools we’ll need...

- Law of Large Numbers
- Central Limit Theorem
- Chebyshev's Inequality
- Addition of Independent Variables
- Convolution of Gaussians
 - Used to derive properties of the Random Walk process and the smoothed Gaussian i.i.d. process
- Memoryless transformations of RVs
 - Used to derive statistical properties of smoothed Gaussian i.i.d. process
- Multi-Dimensional Gaussian Random Variables
- Correlation and Correlation Coefficient

Binomial Random Process

Consider the Bernoulli random process and its running sum:

\[
\begin{align*}
\mathbb{P}(K) &= \binom{N}{k} \beta^k (1-\beta)^{N-k} \\
\sum_{i=0}^{N} x[i]
\end{align*}
\]

- The binomial coefficient counts the number of ways we can observe k successes in N trials.
- The edge weights compute the probability of a given sequence with k successes in N trials.

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Binomial Random Process

Consider the Bernoulli random process and its running sum:

\[
x[n] \sim \text{Ber}(\beta)
\]

\[
k[N] = \sum_{i=0}^{N} x[i]
\]

DeMoivre-Laplace Approximation

\[P(k) = \binom{N}{k} \beta^k (1-\beta)^{N-k}
\]

DeMoivre-Laplace Theorem

\[
\approx \frac{1}{\sqrt{2\pi N\beta (1-\beta)}} \exp\left(-\frac{(k-N\beta)^2}{2N\beta (1-\beta)}\right)
\]

Q. So why does this approximation work?

A. DeMoivre-Laplace is an example of the Central Limit Theorem.

Binomial Random Process

Pascal's triangle

- A simple way to compute the binomial coefficient.
- Turn the graph on its side.

- So Pascal's triangle is just doing the bookkeeping for us.
- It is also an example of something else: namely what happens when we add independent random variables.
Sum of Two Independent Random Variables

- Suppose we generate a new random variable as the sum of two random variables

\[z = x + y \]

- Use CDF relationship to derive the PDF of the new variable
- The PDF resulting from the sum of two independent variables is the convolution of the individual PDFs

\[p_z(z) = p_x(z) * p_y(z) \]

Chebyshev’s Inequality

- A simple distribution free bound which is a function of the variance of the random variable.
- It bounds the Probability that a random variable will deviate from its mean by more than some threshold \(t \).

\[\Pr \{|x - \mu_x| > t\} \leq \frac{\sigma_x^2}{t^2} \]

- Simple to prove and useful in proofs.
- It is a loose bound.
Chebyshev's Inequality (Graphically)

Start with the definition of variance:

\[\sigma^2 = \int (x - \mu)^2 p(x) \, dx \]

Note that it is the integral of the product of two nonnegative functions. The test is a parabola \((x - \mu)^2 \) centered at \(\mu \). The error is the part \(p(x) \).

Divide the integral into 3 regions:

\[(-\infty, \mu - r), [\mu - r, \mu + r), [\mu + r, \infty] \]

as done in line (a)

Drop the middle region. This gives us our first inequality of line (b)

For \(x \leq \mu - r \) and \(x \geq \mu + r \), replace the parabola with \(r^2 \). This gives us our second inequality in line (c)

Since \(r^2 \) is constant, bring it to the left side of the inequality. This leaves us with an integral which is by definition the probability of the event \(x \) falling outside the range \(\mu \pm r \).
The Utility of 2nd Order Statistical Relationships

What do we mean by 2nd-order statistical relationships?

• For a single RV \(x \) this refers to expectations of functions of the form:
 \[E \{(ax + \beta)(x + b)\} = aE\{x^2\} + (ab + \beta b)E\{x\} + \beta b \]

• Similarly for two RVs \(x_1 \) and \(x_2 \):
 \[E \{(a_{x_1} + \beta)(a_{x_2} + b)\} = aE\{x_1^2\} + (a_{x_1}b_{x_2} + a_{x_1}b)E\{x_1\} + \beta bE\{x_2\} + \beta b \]

This includes quantities such as:

• mean: \(\mu = E\{x\} \)
• variance: \(\sigma^2 = E\{(x - \mu)^2\} \)
• covariance: \(E\{(x_1 - \mu_1)(x_2 - \mu_2)\} \)
• correlation: \(E\{x_1x_2\} \)
• correlation coefficient: \(\rho_{12} = \frac{1}{\sigma_{1}\sigma_{2}}E\{(x_1 - \mu_1)(x_2 - \mu_2)\} \)

We say two variables are uncorrelated if
 \[E\{x_1x_2\} = \mu_{1} \mu_{2} \rightarrow E\{(x_1 - \mu_1)(x_2 - \mu_2)\} = 0 \rightarrow \rho_{12} = 0 \]

2nd Order Statistical Relationships (Gaussian Case)

• Given \(x, y \) jointly Gaussian with the following mean and covariance

\[
\begin{bmatrix}
\mu_x \\
\mu_y \\
\end{bmatrix} = \mathbb{E}\left\{ \begin{bmatrix}
x \\
y \\
\end{bmatrix} \right\}
\]

\[
\Sigma_{xy} = \mathbb{E}\left\{ \begin{bmatrix}
x - \mu_x \\
y - \mu_y \\
\end{bmatrix} \begin{bmatrix}
x - \mu_x \\
y - \mu_y \\
\end{bmatrix}^T \right\}
\]

\[
= \mathbb{E}\left\{ \begin{bmatrix}
(x - \mu_x)^2 & (x - \mu_x)(y - \mu_y) \\
(x - \mu_x)(y - \mu_y) & (y - \mu_y)^2 \\
\end{bmatrix} \right\}
\]

\[
= \begin{bmatrix}
\sigma_x^2 & \rho_{xy} \sigma_x \sigma_y \\
\rho_{xy} \sigma_x \sigma_y & \sigma_y^2 \\
\end{bmatrix}
\]

• For a general \(N \)-dimensional Gaussian random vector, \(x \):

\[
p(x; \Sigma, \mu) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right)
\]

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
2nd Order Statistical Relationships (Gaussian Case)

Given x, y jointly Gaussian with the following mean and covariance

$$
E_y \left[\begin{bmatrix} x \\ y \end{bmatrix} \right] = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} \\
E_y \left[\begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix} ^T \right] = \begin{bmatrix} \sigma_x^2 & \rho_{xy} \sigma_x \sigma_y \\ \rho_{xy} \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}
$$

Then $p(y|x)$ is also Gaussian with the following conditional mean and variance

$$
\mu_{y|x} = E \{ y | X = x \} = \mu_y + \rho_{xy} \frac{\sigma_y}{\sigma_x} (x - \mu_x) \\
\sigma_{y|x}^2 = \sigma_y^2 \left(1 - \rho_{xy}^2 \right)
$$

Note that these are specified in terms of the second order relationships between x and y.

Depicted graphically

- μ_x and μ_y represent our prior expectation of the random variables
- Having observed a value of X our new expectation of Y is modified by

$$
\mu_{y|x} = \mu_y + \rho_{xy} \frac{\sigma_y}{\sigma_x} (x - \mu_x)
$$

- Since $0 < \rho_{xy}^2 \leq 1$, our uncertainty is reduced.

$$
\sigma_{y|x}^2 = \sigma_y^2 \left(1 - \rho_{xy}^2 \right)
$$

Note that all parameters are 1st or 2nd order statistical properties.
Linear Prediction (NonGaussian Case)

• Suppose \(x, y \) are not jointly Gaussian.
• We wish to find the "best" linear predictor of \(y \) as a function of \(x \)
 \[
 \hat{y}(x) = ax + b
 \]
• Define "best" in terms of expected squared error:
 \[
 J = E \left\{ (y - \hat{y}(x))^2 \right\}
 \]
 expectation over both \(x \) and \(y \)
• The \((a, b)\) which minimize \(J \) are
 \[
 a = \rho_{xy} \frac{\sigma_y}{\sigma_x} \quad b = \mu_y - \rho_{xy} \frac{\sigma_y}{\sigma_x} \mu_x
 \]

Derivation

Express \(J \) in terms of \(a \), \(b \), and \(x \).
 \[
 J = E \left\{ (y - \hat{y}(x))^2 \right\} = E \left\{ (y - ax - b)^2 \right\}
 \]
 Take the derivatives with respect to \(a \) and \(b \)
 \[
 \frac{\partial J}{\partial a} = -2E \left\{ (y - ax - b) \right\} x
 \]
 \[
 \frac{\partial J}{\partial b} = -2E \left\{ (y - ax - b) \right\}
 \]
 Evaluate expectations
 \[
 E \left\{ (y - ax - b) \right\} = \rho_{xy} \sigma_y + \mu_y \rho_{yz} - \mu_y
 \]
 \[
 E \left\{ (y - ax - b) \right\} = \rho_{xy} \sigma_y + \mu_y \rho_{yz} - \mu_y
 \]
 Set equations to zero and solve for \(a \) and \(b \)
 \[
 \rho_{xy} \sigma_y + \mu_y \rho_{yz} = 0
 \]
 \[
 \mu_y - \mu_x = 0
 \]

Convolution of Gaussians

• If \(x = y + z \) (\(y \) and \(z \) statistically independent) then \(p_x(x) \) is the convolution of \(p_z(z) \) and \(p_y(y) \).
 \[
 x = y + z \quad \leftrightarrow \quad p_x(x) = p_y(x) \ast p_z(x)
 \]
• A property of Gaussian functions is that when convolved with each other the result is another Gaussian:
 \[
 N \left(x; \mu_1, \sigma_1^2 \right) \ast N \left(x; \mu_2, \sigma_2^2 \right) = \int_{-\infty}^{\infty} N \left(u; \mu_1, \sigma_1^2 \right) N \left(x - u; \mu_2, \sigma_2^2 \right) du
 \]
 \[
 = N \left(x; \mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 \right)
 \]
• Related to the Central Limit Theorem: when we repeatedly sum many RVs with finite variance (not just Gaussians) the repeated convolution tends to a Gaussian (in distribution).

while this is a useful property in general, we'll use it to specifically to analyze the statistics of random walk.
Memoryless Transformations of RVs

Linear Case

\[y = ax + b \]

- Assuming \(a > 0 \) then

\[
p_y(y) = \frac{1}{a} p_x \left(\frac{y - b}{a} \right)
\]

- For any \(a \) (not equal to zero) we get

\[
p_y(y) = \frac{1}{|a|} p_x \left(\frac{y - b}{a} \right)
\]

Derivation

- Define the event over \(Y \) in terms of an event over \(X \)

\[
P_Y(y) = \Pr[Y \leq y] = \Pr[(ax + b) \leq y]
\]

\[
= \begin{cases}
\Pr[X \leq \frac{y-b}{a}] & ; a > 0 \\
\Pr[X \geq \frac{y-b}{a}] & ; a < 0
\end{cases}
\]

\[
= \begin{cases}
\int_{-\infty}^{\frac{y-b}{a}} p_x(u) \, du & ; a > 0 \\
\int_{\frac{y-b}{a}}^{\infty} p_x(u) \, du & ; a < 0
\end{cases}
\]

Substitute \(u = \frac{y-b}{a} \):

\[
\begin{align*}
\int_{-\infty}^{-} p_y(y) \, dy &= \int_{-\infty}^{0} p_x \left(\frac{u}{a} \right) \, du \\
&= \int_{-\infty}^{0} p_x \left(\frac{v}{a} \right) \, dv \\
&= \int_{-\infty}^{0} p_x \left(\frac{u}{a} \right) \, du \\
&= \int_{-\infty}^{0} \frac{1}{|a|} p_x \left(\frac{v}{a} \right) \, dv \\
&= \frac{1}{|a|} \left[p_x \left(\frac{v}{a} \right) \right]_{-\infty}^{0}
\end{align*}
\]

Random Signals Continued

(statistics and signal processing)
Recap

at 6AM this figure seemed like a good idea, 9:30AM...not so much

- adding i.i.d. random variables
- Law of Large Numbers (convergence to expectation)
- Tchebyshev's Inequality (bounds deviation from μ in terms of σ^2)
- Central Limit Theorem (convergence to Gaussian in Distribution)
- Convolving PDFs
- "Best" Linear predictors only needed 2nd order statistics
- Transformations of RVs
- Basic operations of filtering random processes with LSI systems

Gaussian Random Walk

- The evolution equation for (Gaussian) random walk is specified in terms of a linear difference equation:

$$
\begin{align*}
y[0] &= 0 \\
y[n] &= y[n-1] + x[n] \\
x[n] &\sim N(x; 0, \sigma^2)
\end{align*}
$$

- Given the specification we can derive statistical properties of the random process $y[n]$ in terms of the statistical properties of $x[n]$.
- The tools for linear systems are sometimes useful for analyzing such equations (when?).
- We'll get at a statistical description of $y[n]$ in a somewhat cumbersome way as a means of motivating the concept of stationarity.
Random Walk

- The top plot shows a single realization.
- The second plot shows many realizations.
- The bottom plot shows the mean +/- the variance as a function of time (index).
- The mean is constant (=y[0]) over all time, but the variance grows linearly with time.

Gaussian Random Walk

Use the linear difference equation to derive the process statistics in closed form:

- Given the following:
- Express y[1] in terms of x[1] given y[0]=0 to get the PDF of y[1]:

\[
\begin{align*}
y[0] &= 0 \\
y[n] &= y[n-1] + x[n] \\
x[n] &\sim N(x; 0, \sigma^2)
\end{align*}
\]

\[
\begin{align*}
p_{y[1]}(y[1]) &= p_{x[1]}(y[1]) \\
&= N(y[1]; 0, \sigma^2)
\end{align*}
\]

- Repeat for y[2], y[3], ..., y[N] (use the convolution property of Gaussians):

\[
\begin{align*}
p_{y[2]}(y[2]) &= p_{x[1]}(y[2]) + p_{x[2]}(y[2]) \\
&= N(y[2]; 0, 2\sigma^2)
\end{align*}
\]

\[
\begin{align*}
p_{y[3]}(y[3]) &= N(y[3]; 0, 3\sigma^2)
\end{align*}
\]

\[
\begin{align*}
y[n] &= \sum_{i=1}^{n} x[i] \\
p_{y[n]}(y[n]) &= N(y[n]; 0, n\sigma^2)
\end{align*}
\]
Gaussian Random Walk

- We can derive the joint PDF of \(\{y[n], y[m]\} \) using conditional probability:

\[
p(y[n]) = \mathcal{N}(y[n]; 0, \sigma^2)
\]

\[
p(y[n], y[m]) = p(y[n])p(y[m]|y[n])
\]

- To get \(p(y[m]|y[n]) \) assume \(m > n \) and write \(y[m] \) in terms of \(y[n] \)

\[
v[m] = \sum_{i=1}^{m} x[i]
\]

\[
= \sum_{i=1}^{n} x[i] + \sum_{i=n+1}^{m} x[i]
\]

\[
y[n] + \sum_{i=n+1}^{m} x[i]
\]

- When conditioned on \(y[n] \), randomness comes only from the second term, which is Gaussian, yielding:

\[
p(y[n], y[m]) = \mathcal{N}(y[n]; 0, \sigma^2) \mathcal{N}(y[m]; y[n], (m-n)\sigma^2)
\]

Gaussian Random Walk

- Alternatively, since variables are jointly Gaussian (which we would have to prove), we could compute the mean and covariance over the vector \([y[n], y[m]]^T \).

\[
p(y[n], y[m]) \sim \frac{1}{(2\pi)^{\frac{1}{2}} |\Sigma|^\frac{1}{2}} \exp \left(-\frac{1}{2} \left[\begin{array}{l} y[n] \\ y[m] \end{array} \right] ^T \Sigma^{-1} \left[\begin{array}{l} y[n] \\ y[m] \end{array} \right] - \mu \right)
\]

\[
\mu = \left[\begin{array}{c} \mu_n \\ \mu_m \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]
\]

\[
\Sigma_{y[n],y[m]} = \left[\begin{array}{c} \sigma_n^2 & \rho_{nm}\sigma_n\sigma_m \\ \rho_{nm}\sigma_n\sigma_m & \sigma_m^2 \end{array} \right] = \left[\begin{array}{c} \frac{n\sigma_x^2}{m} & \sqrt{\frac{n\sigma_x^2}{m} \sigma_m^2} \\ \sqrt{\frac{n\sigma_x^2}{m} \sigma_m^2} & \frac{m\sigma_x^2}{m} \end{array} \right]
\]

- This result easily extends to all combinations of elements of the random walk process (i.e. we can derive covariances for collections of time samples).
Gaussian Random Walk

So what have we shown?
- Given a specification in terms of linear difference equations we can derive properties of a random process in closed form.
- However, the derivation for this very simple case was nontrivial.
- We will look for simpler ways of describing random processes.

Specific to random walk we see that the marginal and joint densities change over time.
- This is an example of a nonstationary random process.

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Stationary Processes

Stationarity (or lack thereof) is an important statistical property of a random process.

- There are two types of stationarity we are interested in:
 - Strict Sense Stationarity (SSS)
 - A very restrictive class of random processes
 - Wide Sense Stationarity (WSS)
 - A much broader class of random processes
- SSS implies WSS, but the converse is not true.

Strict Sense Stationary

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Strict Sense Stationarity (SSS)

- A random process, \(x[n] \), is strict sense stationary if the following property holds:

\[
p(x[i] = x_0, \ldots, x[i + N - 1] = x_{N-1}) = \]
\[
p(x[j] = x_0, \ldots, x[j + N - 1] = x_{N-1})
\]

for all \(i, j, N, \) and \(\{x_0, \ldots, x_N\} \).

- This is basically saying that the signal statistics don't inform us about index or time.

- The Gaussian Random Walk process is an example of a non-Stationary process (e.g. variance changes over time)

- The Gaussian I.I.D. process is perhaps the simplest example of a Stationary process (the statistics don't change)

Gaussian I.I.D. Process

- This is a simple example of a stationary process:

\[
y[n] \sim N(y; 0, \sigma^2)
\]

- \(y[n] \) are sampled Independently and Identically from the same marginal density

- All joint densities can be expressed as products:

\[
p(y[i], \ldots, y[i + N - 1]) =
\prod_{k=0}^{N-1} N(y[i + k]; 0, \sigma^2)
\]

- The statement of SSS holds trivially:

\[
p(y[i] = y_0, \ldots, y[i + N - 1] = y_{N-1}) =
p(y[j] = y_0, \ldots, y[j + N - 1] = y_{N-1})
\]

- All i.i.d. (Independent and Identically Distributed) processes are SSS.

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Smoothed Gaussian I.I.D. Process

- The smoothed i.i.d. random process (which is SSS) is also defined in terms of a linear difference equation:

\[y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \]
\[x[n] \sim N(x; 0, \sigma^2) \]

- Use convolution property and transformation property to derive \(p_y(y[n]) \):

\[
p_y(y[n]) = (M \mu_y(\sigma^2[n])) \cdots \cdots (M \mu_y(\sigma^2[n]))
\]
\[= N\left(y[n]; \mu_y, \sigma^2\right) \]

- Write \(y[n] \) and \(y[n+M] \) in terms of \(x[n] \) to see that they are independent of each other (i.e., there are no terms in \(y[n] \) that have any statistical dependence on any terms in \(y[n+m] \)).

\[
y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] = \frac{1}{M} \sum_{k=1}^{M} x[n-M+k]
\]
\[y[n+M] = \frac{1}{M} \sum_{k=0}^{M-1} x[n+M-k] = \frac{1}{M} \sum_{k=1}^{M} x[n+M+1-k]
\]
\[\mu(x[n+M]) = N\left(\mu_x, \sigma_x^2\right) \]

- Consequently, in order to show SSS we are only left to show that \(p_y(y[n], \ldots, y[n+N]) \) is independent of \(n \).

This would be done in the same way that we derived joint statistics for random walk.

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Relaxing Strict Sense Stationarity -> WSS

- Strict Sense Stationarity is a somewhat restricted class of random processes.
- This motivates us to look at milder statement of stationarity, specifically Wide Sense Stationarity.
- Wide Sense Stationarity only considers up to 2nd order statistics of a random process.
- Relating the 2nd order statistical properties of output of a linear system when the input is a WSS random process is much easier than in the SSS case.

Wide Sense Stationary

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Wide Sense Stationarity (WSS)

- A random process $x[n]$ is wide sense stationary if the following properties hold:

 $E\{x[n]\} = \mu_x \quad \forall i$

 $E\{x[n]x[n+m]\} = R_x[m] \quad \text{depends only on } m$

- $R_x[m]$ is the auto-correlation function (discussed later).
- Straightforward to show that SSS implies WSS.
- WSS implies SSS only when all of the joint densities of the random process are Gaussian.
- WSS implies constant 2nd order statistics.

Uniform I.I.D. (smoothing revisited)

- Suppose we replace the Gaussian i.i.d. random process in our smoothing example with an i.i.d. sequence of Uniform random variables with the same variance.
- The result is a random process whose 2nd order statistical properties are the same as the Gaussian case.
- Why?
Time-Averages of Random Signals

- The time-average or mean of a random signal is defined as:

\[
\langle x[n]\rangle = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} x[n]
\]

when the limits exist.
- You should be able to show that the time-average operator is linear

\[
\langle ax[n] + by[n]\rangle = a \langle x[n]\rangle + b \langle y[n]\rangle
\]
Signal Statistics using Time-Averages

- The mean (average) of a signal is denoted:
 \[\mu_x = \langle x[n] \rangle \]

- The mean power of a signal is defined in terms of its time-average:
 \[P_x = \langle x[n]^2 \rangle \]

- The AC power refers to the power in the variational signal component:
 \[\sigma_x^2 = \langle (x[n] - \mu_x)^2 \rangle \]

- Fairly straightforward to show that

\[P_x = \sigma_x^2 + \mu_x^2 \]
Ergodicity

- Random processes which are ergodic have the property that there time averages approximate their statistical averages. That is,

\[
\langle x[n]^p \rangle = \mathbb{E}\{x[n]^p\}
\]

for all \(p \) (actually for all functions of \(x[n] \) or \(x(t) \)).
- The left hand side is an average over all indices (or time) for a specific realization.
- The right hand side is an expectation over all realizations at a specific index (or time).
- Generally, SSS implies Ergodicity (there are special cases for which this is not true).

Mean and Covariance Ergodicity

- Mean ergodicity is a milder form of ergodicity stating simply that the statistical average equals the time average:

\[
\langle x[n] \rangle = \mathbb{E}\{x[n]\} = \mu_x
\]

- Covariance ergodicity states that the variance over time is equal to the variance over realizations:

\[
\langle (x[n] - \mu_x)^2 \rangle = \mathbb{E}\{(x[n] - \mu_x)^2\}
\]

- Covariance-ergodicity implies mean-ergodicity, but not the reverse.
• Autocorrelation Functions, Crosscorrelation Functions
 - Properties
 (these were presented on the board)

Autocorrelation and Autocovariance

It turns out that we could have made a choice in our
definition of the auto-correlation function.

\[R_x[n, m] = E \{ x[n]x[n - m] \} \]
\[\text{OR} \]
\[R_x[n, m] = E \{ x[n]x[n + m] \} \]

Q: So why choose one over the other?
A1: By choosing the definition with \(x[n+m] \), many of the
spectral properties used later will work out in way that
is consistent with processing of deterministic signals
A2: I like Gubner's book on probability and random
processes
Stationarity

- Wide Sense Stationarity states that statistics up to second-order are constant over time.
- Strict Sense Stationarity states that all of the process statistics are constant over time.
- SSS implies WSS, but not vice versa (except for a few special cases)
 - e.g. unbounded variance

Ergodicity

- Strictly Sense Stationarity (almost always) implies Ergodicity.
- Wide Sense Stationarity (almost always) implies Mean and Covariance Ergodicity
- We care about Ergodicity because it means time-averages converge to statistical averages.
- Consequently, for Stationary-Ergodic processes we can estimate statistical properties from the time-average of a single realization.
- We can come up with uninteresting examples of SSS processes which are not Ergodic

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
It turns out that characterizing the 2nd order statistical properties of a random process which is input to a linear time/shift invariant system allows us to easily characterize the 2nd order statistical properties of the resulting output.

Most (all?) of the properties we'll be discussing are geared towards understanding the nature of this relationship.

\[
x[n] \Rightarrow R_x[m] \\
R_x[m], h[n] \Rightarrow R_y[m] \\
R_{xy}[m], R_y[M] \Rightarrow g[n] \Rightarrow \hat{x}[n]
\]
Response of a Linear System

- Given a WSS (or SSS) random process, \(x[n] \), and LSI system with impulse response \(h[n] \) we can compute the time-average of the output \(y[n] \).

\[
\begin{align*}
\langle y[n] \rangle &= \langle x[n] \ast h[n] \rangle \\
&= \left(\sum_{k=-\infty}^{\infty} x[n-k]h[k] \right)_n \\
\text{(linearity)} &= \sum_{k=-\infty}^{\infty} h[k] \langle x[n-k] \rangle_n \\
\text{(WSS)} &= \sum_{k=-\infty}^{\infty} h[k] \langle x[n] \rangle \\
&= \langle x[n] \rangle \sum_{k=-\infty}^{\infty} h[k] \\
\text{(ZVT)} &= \langle x[n] \rangle H[0]
\end{align*}
\]

• Cross-correlation of input and output
White Noise Sequences/Estimating System Response

- White noise sequences are WSS processes whose autocorrelation function is equal to:

\[
R_w[m] = \langle w[n]w[n+m] \rangle = \sigma_w^2 \delta[m]
\]

- So, if the input to our system is a white-noise sequence:

\[
R_{wy}[m] = h[m] * R_w[m] = h[m] \ast \sigma_w^2 \delta[m] = \sigma_w^2 h[m]
\]

then the 2nd order statistics of the output process can be used to estimate the system response function.

- Why is this called "white" noise?
 - related to Power Spectrum.

- The process is uncorrelated from sample-to-sample.
- All i.i.d. sequences satisfy this constraint.
- However, we only require the samples to be uncorrelated, but not independent.

Power Spectral Density

- Note that in the previous result we stated:

\[
R_h[m] = h[-m] * h[m]
\]

so, the autocorrelation of the system response function is computed as the convolution of the h[m] with a time-reversed version h[-m].

- This convolution could be computed in the Fourier domain:

\[
h[-m] * h[m] = \mathcal{F}^{-1}\left\{H^*(f)H(f)\right\} = \mathcal{F}^{-1}\left\{|H(f)|^2\right\}
\]

\[
R_h[m] \rightarrow |H(f)|^2
\]
Power Spectrum (con’t)

- Motivated by the previous convolution, we shall define the power spectrum of a random process to be the Fourier transform pair of the autocorrelation function:

\[R_x[m] \leftrightarrow S_x(f) \]

\[S_x(f) = \sum_{k=-\infty}^{\infty} R_x[m]e^{-j2\pi fm} \]

- Consequently, we can express the output power spectrum as a function of the system response in the frequency domain and the input power spectrum:

\[S_y(f) = |H(f)|^2 S_x(f) \]

Power Spectrum Estimation (nonparametric)

- The Periodogram estimate of the Power Spectrum is defined as

\[\tilde{S}_x(f) = \frac{1}{N} |X_N(f)|^2 \]

\[= \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n]e^{-j2\pi fn} \right|^2 \]

Where the estimate is being computed from the first N observations of a realization, x[n].

- While this seems like a logical estimate of \(S_x(f) \), it turns out that it does not converge to \(S_x(f) \) as N grows large.

- Why? Because as N grows large the number of degrees of freedom in our estimator grows as well.

- The consequence is that the variance of the estimate is of the same order as the value of \(S_x(f) \) at every \(f \).
Power Spectrum Estimation (nonparametric)

• However, all is not lost. If we apply the estimator below to multiple sections of \(N \) observations of the realization, \(x[n] \).

\[
\hat{S}_x(f) = \frac{1}{NM} \sum_{m=0}^{M-1} |X_{N,M}(f)|^2
\]

where \(X_{N,M}(f) \) is the periodogram of the Mth section, then the estimate converges to the true Power Spectrum as \(M \) and \(N \) grow large.

Power Spectrum Estimation (parametric)

• Based on previous results, suppose we model an observed realization, \(y[n] \), as the output of a filter, \(h[n] \), whose input was a white-noise sequence.
• Can you think of a convenient way to estimate the power spectrum?
• How does it differ from the periodogram approach?

• The estimate would simply be:

\[
S_y(f) = |H(f)|^2
\]

• Why?
• The essential difference (and potential win) comes from how you specify \(h[n] \).
• If you leave the number of free parameters low \textit{AND} your model (the function of the parameters) is reasonably close, the estimate can be quite good.
Wiener Filtering

Primary Concepts for the Wiener Filter

• The problem that a Wiener filter solves
• Applications of Wiener filters
• Wiener filtering implementation details
The Problem

- Suppose we have two random processes whose joint second-order statistics are known, and we want to estimate one from an observation of the other.
 - Disclaimer: We'll only deal with jointly WSS processes.

\[x[n] \rightarrow ? \rightarrow y[n] \]

Wiener Filter (one case)

- Suppose we have 2 realizations of random processes, \(y[n] \) and \(x[n] \) and we wish to construct a filter which predicts \(y[n] \) from observations of \(x[n] \).
- One criteria for choosing such a filter might be to minimize the mean square error (MMSE) between \(y[n] \) and your prediction.

\[
\langle e[n]^2 \rangle = \langle (y[n] - \hat{y}[n])^2 \rangle \\
= \langle (y[n] - h[n] * x[n])^2 \rangle \\
= \langle (y[n] - \sum_k h[k] x[n-k])^2 \rangle \\
= \sigma_y^2 - 2 \sum_k h[k] R_{xy}[k] + \sum_k \sum_l h[k] h[l] R_{xx}[k-l]
\]
Wiener–Hopf Equations

• We wish to determine the $h[k]$ which minimize the criterion.
• Taking a gradient with respect to the coefficients yields the following system of linear equations

$$R_{xy}[k] = \sum_{l=-\infty}^{\infty} h[l] R_{x}[k-l]$$

• These equations are known as the Wiener–Hopf or Yule–Walker equations.
• They are easily solved provided there is enough data given the size of the filter.

Nth-order FIR filters

• If we restrict ourselves to Nth order FIR filters, the Wiener–Hopf equations become:

$$\begin{bmatrix}
 r_0 & r_1 & \ldots & r_N \\
 r_1 & r_0 & \ldots & r_{N-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_N & r_{N-1} & \ldots & r_0 \\
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_N \\
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
\end{bmatrix}$$

• This is a system of linear equations which can be solved if N is not too large.

Orthogonality Principle

• The error is uncorrelated with the estimate.

$$R_{\hat{y}e}[k] = 0$$

Editorial Comments of Kevin Wilson (former 6.555 TA)

• This is big with the 6.432 crowd.
• It can be useful to check this when you're debugging Wiener filter code.
• Why is this "the right thing"?
Non-causal Wiener Filter

\[R_{xy}[k] = \sum_{l=-\infty}^{\infty} h[l] R_{xx}[k-l] \]

- The Wiener-Hopf equations are just a convolution in this case.
- Time-domain convolutions are usually easier to manipulate in the frequency domain.

yet another editorial comment from K. Wilson
- Let’s go there together.

Welcome to the frequency domain

- Power spectrum reminders:

\[S_x(f) = \sum_{k=-\infty}^{\infty} R_x[k] e^{-j2\pi fk} \]

\[R_{xy}[n] = \sum_{l=-\infty}^{\infty} h[l] R_x[n-l] = h[n] * R_x[n] \]

\[R_y[n] \leftrightarrow S_y(f) \]

\[h[n] \leftrightarrow H(f) \]

\[R_x[n] \leftrightarrow S_x(f) \]

\[H(f) = \frac{S_y(f)}{S_x(f)} \]
Non-causal Wiener filtering in the frequency domain

- So Wiener-Hopf is:

\[
S_{xy}(f) = S_x(f)H(f) \\
H(f) = \frac{S_{xy}(f)}{S_x(f)}
\]

- Each frequency is independent of all other frequencies.
- Now we'll look at some special cases and examples.

Uncorrelated noise case

- Uncorrelated noise:
 \[R_{yd}[n] = 0 \quad \leftrightarrow \quad S_{yd}(f) = 0 \]

\[
H(f) = \frac{S_{xy}(f)}{S_x(f)} = \frac{S_y(f)}{S_y(f) + S_d(f)}
\]
Signal-to-noise ratio interpretation

\[
\begin{align*}
SNR(f) & = \frac{S_y(f)}{S_d(f)} \\
H(f) & = \frac{S_y(f)}{S_y(f) + S_d(f)} \\
& = \frac{SNR(f)}{SNR(f) + 1}
\end{align*}
\]

\[
\begin{align*}
SNR(f) \gg 1 : & \quad H(f) \approx 1 \\
SNR(f) \ll 1 : & \quad H(f) \approx 0
\end{align*}
\]

ECG example

- What you did in lab (band-pass filter):

- Wiener filtered result:
(Synthetic) Audio Example

\[S(f) \xrightarrow{G(f)} Y(f) \xrightarrow{\text{Wiener Filter}} \hat{S}(f) \]

- \(S(f) \): Pressure waveform at Alan's mouth
- \(G(f) \): Room acoustics
- \(Y(f) \): Room acoustics + Noise
- \(\hat{S}(f) \): Pressure waveform at listener's ear

Wiener filter abuse, Part 1

- What if we use the filter derived from Alan's speech on Bob's speech?
 - Bob's noisy speech:
 - Bob's Wiener-filtered speech:

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Wiener filter abuse, Part 2

- What if we use the filter derived from Alan's speech on Caroline's speech?

- Caroline's noisy speech:
- Caroline's Wiener-filtered speech:

Wiener Filters are not the magic solution to all of your problems.

- Additive noise

- Frequency nulls
System Identification - Problem Definition

- Estimate a model of an unknown system based on observations of inputs and outputs.

\[
x[n] \rightarrow ? \rightarrow y[n] \\
\text{Model} \rightarrow \hat{y}[n]
\]

Wiener Filters for System ID

- Let's restrict our model to be an LTI system.

\[
x[n] \rightarrow ? \rightarrow y[n] \\
h[n] \rightarrow \hat{y}[n]
\]

- Now the goal is to find the LTI system that best predicts the output from the input. This is the Wiener filter (except that we now estimate output from input instead of input from output).
 - The result is the same, but we shift focus from \(\hat{y}[n] \) to \(H(f) \).
Example – LTI System

- If the unknown system really is LTI, we hope that Wiener filtering recovers that LTI system exactly.

\[
X(f) \xrightarrow{G(f)} Y(f) \quad H(f) = \frac{S_y(f)}{S_x(f)} = \frac{S_x(f)G(f)}{S_x(f)} = G(f)
\]

Example – LTI system plus noise

\[
X(f) \xrightarrow{G(f)} Y(f) \quad \text{Model} \quad H(f) \xrightarrow{\hat{Y}(f)} \]

\[
D(f) + \quad \hat{Y}(f) \quad H(f) = \frac{S_y(f)}{S_x(f)} = \frac{S_x(f)G(f) + S_{wd}(f)}{S_x(f)} \quad = \frac{S_x(f)G(f)}{S_x(f)} = G(f)
\]

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Example – LTI system plus noise

\[X(f) \xrightarrow{G(f)} Y(f) \]
\[\xrightarrow{H(f)} \hat{Y}(f) \]
\[D(f) \]

\[H(f) = \frac{S_{xy}(f)}{S_x(f)} = \frac{S_x(f)G(f) + S_{yd}(f)}{S_x(f)} = \frac{S_x(f)G(f)}{S_x(f)} = G(f) \]

We can still recover the LTI system exactly!

Causal Wiener Filters

• The Wiener-Hopf equations had a simple form in the non-causal case. Is there an equally simple form for the causal Wiener filter?
• Short answer – not really, but we’ll do our best.

\[
\begin{bmatrix}
R_x[0] & R_x[1] & \cdots & R_x[N-1] \\
R_x[1] & R_x[0] & \cdots & R_x[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
R_x[N-1] & R_x[N-2] & \cdots & R_x[0]
\end{bmatrix}
\begin{bmatrix}
h[0] \\
h[1] \\
\vdots \\
h[N-1]
\end{bmatrix}
=
\begin{bmatrix}
R_{yy}[0] \\
R_{yy}[1] \\
\vdots \\
R_{yy}[N-1]
\end{bmatrix}
\]

• Let \(N \to \infty \). How do we solve this equation?
Causal Wiener Filters

- The non-causal Wiener filter had a simple frequency-domain interpretation. Can we do something similar for the causal (IIR) Weiner filter?
- Short answer - sort of.

\[
\begin{bmatrix}
R_x[0] & R_x[1] & \cdots & R_x[N-1] \\
R_x[1] & R_x[0] & \cdots & R_x[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
R_x[N-1] & R_x[N-2] & \cdots & R_x[0] \\
\end{bmatrix}
\begin{bmatrix}
h[0] \\
h[1] \\
\vdots \\
h[N-1] \\
\end{bmatrix}
=
\begin{bmatrix}
R_{xy}[0] \\
R_{xy}[1] \\
\vdots \\
R_{xy}[N-1] \\
\end{bmatrix}
\]

- Let \(N \to \infty\). How do we solve this equation?
 - Answer: I have no idea for the general case; let's try a special case.

Causal Wiener Filter w/ white noise observations

- If \(R_x[n] = \delta[n]\), then the system simplifies to:

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{bmatrix}
\begin{bmatrix}
h[0] \\
h[1] \\
\vdots \\
h[N-1] \\
\end{bmatrix}
=
\begin{bmatrix}
R_{xy}[0] \\
R_{xy}[1] \\
\vdots \\
R_{xy}[N-1] \\
\end{bmatrix}
\]

- I can solve that!

\[
h[n] = \begin{cases}
R_x[n] & n \geq 0 \\
0 & n < 0
\end{cases}
\]
Causal Wiener filter with whitening filter

- If we can find a causal whitening filter \(W(f) \) for the observation, we may be able to reduce the problem to the form on the previous slide.
- Hand-waving time... You'll also need the joint statistics between your whitened observation and the process that you're estimating. To get these joint statistics, \(W(f) \) must have a causal inverse.
- It's not always possible to find \(W(f) \) such that both \(W(f) \) and \(W^{-1}(f) \) are causal.

Implementation details

- Filter form restrictions:
 - FIR: solve linear system
 - Causal: whiten observation
 - Noncausal: nice frequency-domain expression
- Acquiring the statistics
 - Where do we get \(R_x \) and \(R_{xy} \)?
 - Sample statistics for auto- and cross-correlations
 - Periodogram estimates of power spectral densities
Summary

• A Wiener filter finds the MMSE estimate of one random process as a linear function of another random process.
• Applications include noise removal and system identification.