HST.721 | Fall 2005 | Graduate

The Peripheral Auditory System


1 Lecture: Introduction   Ions, Channels, Currents, and Electrical Potentials (PDF)

Bibliography of Discussion Papers (PDF)

Electronic Resources (PDF)

5 Discussion: Anatomy (PDF) Forge, A., and T. Wright. “The molecular architecture of the inner ear.” Br Med Bull 63 (2002): 5-24.

Kikuchi, T., R. S. Kimura, D. L. Paul, and J. C. Adams. “Gap junctions in the rat cochlea: immunhistochemical and ultrastructural analysis.” Anat Embryol 191 (1995): 101-118.

Liberman, M. C. “Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections.” Hear Res 3 (1980): 45-63.

———. “Single-neuron labeling in the cat auditory nerve.” Science 216 (1982): 1239-1241.

7 Discussion: Hair Cells and Transduction (PDF) Roberts, W. M., and J. Howard, et. al. “Hair cells: transduction, tuning, and transmission in the inner ear.” Annu Rev Cell Biol 4 (1988): 63-92.

Corey, D. P., and A. J. Hudspeth. “Kinetics of the receptor current in bullfrog saccular hair cells.” J Neurosci 3 (1983): 962-976.

Pickles, J. O., S. D. Comis, and M. P. Osborne. “Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction.” Hear Res 15 (1984): 103-112.

Denk, W., J. R. Holt, G. M. Shepherd, and D. P. Corey. “Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links.” Neuron 15 (1995): 1311-1321.

10 Discussion: Stria and Endocochlear Potential (PDF) Wangemann, P. “K+ cycling and its regulation in the cochlea and vestibular labyrintl.” Audiology Neurootology 7 (2002): 199-205.

Salt, A. N., I. Melichar, and R. Thalmann. “Mechanisms of endocochlear potential generation by stria vascularis.” Laryngoscope 97 (1987): 984-991.

Takeuchi, S., M. Ando, and A. Kakigi. “Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis.” Biophys J 79 (2000): 2572-2582.

12 Discussion: Electromotility and OHCs (PDF) Santos-Sacchi, J. “New tunes from Corti’s organ: the outer hair cell boogie rules.” Curr Opin Neurobio 13 (2003): 459-468.

Holley, M. C., and J. F. Ashmore. “On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea.” Proc R Soc Lond B Biol Sci 232 (1988): 413-429.

Hallworth, R., B. N. Evans, and P. Dallos. “The location and mechanism of electromotility in guinea pig outer hair cells.” J Neurophysiol 70 (1993): 549-558.

Zheng, J., W. Shen, D. Z. He, K. B. Long, L. D. Madison, and P. Dallos. “Prestin is the motor protein of cochlear outer hair cells.” Nature 405 (2000): 149-155.

14 Discussion: Tuning and Mechanics (PDF) Dallos, P. “The active cochlea.” J Neurosci 12 (1992): 4575-4585.

Wilson, J. P., and J. R. Johnstone. “Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe.” J Acoust Soc Am 57 (1975): 705-723.

Ruggero, M. A., and N. C. Rich. “Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane.” J Neurosci 11 (1991): 1057-1067.

Neely, S. T. “A model of cochlear mechanics with outer hair cell motility.” J Acoust Soc Amer 94, no. 1 (1993): 137-146.

16 Discussion: Afferent Transmission (PDF) Fuchs, P. A., E. Glowatski, and T. Moser. “The afferent synapse of cochlear hair cells.” Curr Opin Neurobio 13 (2003): 452-458.

Richards, Griesinger, and Ashmore. “Fast vesicle replenishment allows indefatigable signaling at the first auditory synapse.” Nature 435 (2005): 212-215.

Moser, T., and D. Beutner. “Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse.” Proc Nat Acad Sci 97 (2000): 883-888.

Glowatzki, E., and P. A. Fuchs. “Transmitter release at the hair cell ribbon synapse.” Nat Neurosci 5 (2002): 147-154.

19 Discussion: Auditory Nerve Response (PDF) Kiang, N. Y. S. “Peripheral neural processing of auditory information.” In Handbook of Physiology - The Nervous System III. Section 1: The Nervous System. Vol. III. Sensory Processes. Part 2. Edited by J. M. Brookhart, V. B. Mountcastle, I. Darian-Smith, and S. R. Geiger. Philadelphia, PA: Lippincott Williams and Wilkins, 1981. ISBN: 9780683011050.

Liberman, M. C. “Auditory-nerve response from cats raised in a low-noise chamber.” J Acoust Soc Am 63 (1978): 442-455.

Sachs, M. B., and E. D. Young. “Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate.” J Acoust Soc Am 66 (1979): 470-479.

Young, E. D., and M. B. Sachs. “Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers.” J Acoust Soc Amer 66 (1979): 1381-1403.

25 Discussion: Efferent Control (PDF) Guinan, J. J. “Physiology of olivocochlear efferents.” The Cochlea. Edited by P. Dallos, A. N. Popper, and R. R. Fay. New York, NY: Springer, 1996, pp. 435-500. ISBN: 9780387944494.

Elgoyhen, A. B., D. S. Johnson, J. Boulter, D. E. Vetter, and S. Heinemann. “Alpha 9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.” Cell 79 (1979): 705-715.

Russell, I. J., and E. Murugasu. “Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities.” J Acoust Soc Am 102 (1997): 1734-1738.

Maison, S. F., and M. C. Liberman. “Predicting vulnerability to acoustic injury with a non-invasive assay of olivocochlear reflex strength.” J Neuroscience 20 (2000): 4701-4707.

28 Discussion: Inner Ear Development (PDF) Barald, K., and Kelley. “From placode to polarization: new tunes in inner ear development.” Development 131 (2004): 4119-4130.

Torres, M., and F. Giraldez. “The development of the vertebrate ear.” Mechanisms of Development 71 (1998): 5-21.

Groves, A. K. and M. Bronner-Fraser. “Competence, specification and commitment in otic placode induction.” Development 127 (2000): 3489-3499.

Eddison, M., I. Le Roux, and J. Lewis. “Notch signaling in the development of the inner ear: lessons from Drosophila.” Proc Natl Acad Sci U.S.A. 97 (2000): 11692-11699.

29 Discussion: Trauma and Repair (PDF) Pirvola, U., L. Xing-Qun, J. Virkkala, M. Saarma, C. Murakata, A. M. Camoratto, K. M. Walton, and J. Ylikoski. “Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation.” J Neurosci 20 (2000): 43-50.

Wang, Y., K. Hirose, and M. C. Liberman. “Dynamics of noise-induced cellular injury and repair in the mouse cochlea.” J Assoc Res Otolaryngol 3 (2002): 248-268.

Izumikawa, M., R. Minoda, K. Kawamoto, K. A. Abrashkin, D. L. Swiderski, D. F. Dolan, D. E. Brough, and Y. Raphael. “Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals.” Nat Med 11, no. 3 (March 2005): 271-6. (Epub - February 13, 2005.)

32 Discussion: Sensorineural Hearing Loss (PDF) Liberman, M. C. “Auditory Processing in Sensorineural Hearing Loss.” Basic Science Review for Otolaryngology. Edited by T. R. Van De Water, and H. Staecker. New York, NY: Thieme Medical Publishers, 2005. ISBN: 9780865779013.

Liberman, M. C., and L. W. Dodds. “Single-neuron labeling and chronic cochlear pathology, III: Stereocilia damage and alterations of threshold tuning curves.” Hearing Research 16 (1984): 55-74.

Heinz, M. G., and E. D. Young. “Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss.” J Neurophysiology 91 (2004): 784-795.

Moore, B. C., D. A. Vickers, C. J. Plack, and A. J. Oxenham. “Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism.” J Acoust Soc Amer 106, no. 5 (1999): 2761-2778.

33 Discussion: Review