the Turing test
Inside a room in the robot’s skull I shuffle symbols…As long as all I have is a formal computer program, I have no way of attaching any meaning to any of the symbols. And the fact that the robot is engaged in causal interaction with the outside world won’t help me…
STRONG STRONG AI: there is a computer program (i.e. an algorithm for manipulating symbols) such that any (possible) computer running this program literally has cognitive states

WEAK STRONG AI: there is a computer program such that any (possible) computer running this program and embedded in the world in certain ways (e.g. certain causal connections hold between its internal states and states of its environment) literally has cognitive states
Searle’s official argument against strong AI fails but he does have a point, namely that merely implementing a program is arguably insufficient for (underived) intentionality something else is needed—perhaps certain kinds of causal connections between the system and its environment.
twin-Perry on twin-earth

running the alleged *intends-to-vote-for-Perry* program

why is the program about *Perry* rather than *twin-Perry*?

twin-Perry—lives on a planet in another galaxy
Searle makes a similar point

2. Syntax is not sufficient for semantics

3. Computer programs are entirely defined by their formal, or syntactical, structure

 4. Minds have mental contents; specifically, they have semantic contents (from ‘Can computers think?’)

we’ll return to this ‘twin-earth’ business later
I propose to consider the question, ‘Can machines think?’ This should begin with definitions of the meaning of the terms ‘machine’ and ‘think.’ The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words ‘machine’ and ‘think’ are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, ‘Can machines think?’ is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.
the imitation game: man vs. woman

C: ‘Will X please tell me the length of his or her hair?’

X (man A, imitating a woman): ‘My hair is shingled, and the longest strands are about nine inches long.’

(1950 is a long time ago)
We now ask the question, ‘What will happen when a machine takes the part of A in this game?’ Will the interrogator decide wrongly as often when the game is played like this as he does when the game is played between a man and a woman? These questions replace our original, ‘Can machines think?’
but what is the replacement for?

this may not fit Turing’s intentions, but according to Block the Turing test is intended to provide:

‘...conceptual clarification. Turing was famous for having formulated a precise mathematical concept that he offered as a replacement for the vague idea of mechanical computability. The precise concept (computability by a Turing machine) did everything one would want a precise concept of mechanical computability to do. No doubt, Turing hoped that the Turing test conception of intelligence would yield everything one would want from a definition of intelligence without the vagueness of the ordinary concept.’
\(f \) is computable if and only if \(f \) is Turing-computable

\(x \) is intelligent if and only if \(x \) can pass the Turing test

the ‘only if’ direction of the latter is surely false, because it rules out intelligent agents who can’t use language (e.g. chimps)
is the proponent of Strong AI endorsing the claim that passing the Chinese-understanding Turing test is sufficient for understanding Chinese, etc?

x understands Chinese if x can pass the Chinese-understanding Turing test

answer: NO
another point: no such thing as ‘the’ Turing test

there are numerous Turing tests, corresponding to the numerous answers to these questions:

who are the judges?
how long is the test?
what’s the subject matter?
Image removed due to copyright restrictions.

http://www.loebner.net/Prizef/loebner-prize.html
named after Eliza Doolittle in Shaw’s *Pygmalion*

a ‘Rogerian’ chatbot therapist, developed at MIT in 1966
http://www.manifestation.com/neurotoys/eliza.php3
the claim that passing the test is sufficient for having a mind (etc.) should strike us as suspect it seems to conflate:

(a) we have have excellent evidence for p with
(b) p is true

we will return to this when we talk about ‘behaviorism’
in any event, for any Turing test, no matter how demanding, there is a machine that can pass it that seems not to have a mind
	his is shown by Block’s ‘Aunt Bubbles’ example
'The machine works as follows. The judge goes first. Whatever the judge types in (typos and all) is one of $A_1...A_n$. The machine locates the particular A, say A_{2398}, and then spits back B_{2398}, a reply chosen by the programmers to be appropriate to A_{2398}. The judge types another message, and the machine again finds it in the list of Cs that sprout below B_{2398}, and then spits back the pre-recorded reply (which takes into account what was said in A_{2398} and B_{2398}). And so on. Though the machine can do as well in the one hour Turing Test as Aunt Bubbles, it has the intelligence of a juke-box. Every clever remark it produces was specifically thought of by the programmers as a response to the previous remark of the judge in the context of the previous conversation.'
inside Aunt Bubbles

A¹Aⁿ

B¹Bⁿ

C¹ ... C¹

D¹ ... D¹

Cⁿ ... Cⁿ

Dⁿ ... Dⁿ

Judge

Auntie

Judge

Auntie

Image by MIT OpenCourseWare.
minded creatures must have a certain sort of internal structure—being a giant lookup table isn’t enough
upcoming sessions

Scott Aaronson, CSAIL
dualism