Lecture 18: 11.09.05 Binary systems: miscibility gaps and eutectics

Today:

LAST TIME .. 2
Free energy and phase diagrams of ideal binary solutions ... 2
BINARY SOLUTIONS WITH LIMITED MISCIBILITY IN THE SOLID STATE: MISCE
IBILITY GAPS ... 4
The Regular Solution Model, part I ... 4
Phase diagram of a regular solution ... 7
EUTECTIC SYSTEMS .. 8
Free energy diagrams of eutectic systems .. 8
Analyzing phase equilibria on eutectic phase diagrams ... 11
Example eutectic systems ... 12
REFERENCES ... 14

Reading: Lupis, Chemical Thermodynamics of Materials, Ch VII, ‘Binary Phase Diagrams,’
pp. 204-219

Supplementary Reading:
Last time

Free energy and phase diagrams of ideal binary solutions

Key points:
1. Common tangents to free energy curves define composition regions where phase separation (two-phase equilibria) occurs.
2. Phase separation lowers the overall free energy by splitting the homogenous system into a weighted mix of two separate phases, which each have lower free energy than the starting homogeneous phase.
3. Compositions of the phases in two-phase regions are given by the tangent points, and the amount of each phase is determined by the lever rule.

\[G(x^l) = f^L G^L(x^L) + f^S G^S(x^S) \]

- Two-phase equilibrium introduces the phase fraction, determined by the lever rule:

\[f^s = \text{mole fraction solid in whole system} = \frac{n_A^S + n_B^S}{n_A + n_B} = \frac{x^s - x^L}{x^S - x^L} \]

\[f^l = \text{mole fraction liquid in whole system} = \frac{n_A^L + n_B^L}{n_A + n_B} = \frac{x^L - x^l}{x^S - x^L} \]

\[f^s + f^l = 1 \]
- Free energy diagrams directly relate to binary phase diagrams.

Key points:
1. Free energy diagrams define the structure of the phase diagram.
2. Compositions of two-phase regions, which are tangent points on the free energy diagram, become phase boundaries on the phase diagram.
3. The lever rule is directly applied to tie lines on the phase diagram, to determine the amount of each phase present in two-phase regions.

The ideal solution is a special case - not all materials form binary solutions that are miscible at all compositions and all temperatures, particularly in the solid state. Materials that have incompatible crystal structures cannot form homogeneous solid solutions - they are forced to phase separate into an A-rich solid phase and a B-rich solid phase, to preserve their stable crystalline forms. Today we will examine the phase diagrams of these and other common binary materials systems.
Binary solutions with limited miscibility in the solid state: Miscibility gaps

The Regular Solution Model, part I

- What happens if the molecules in the solution interact with a finite energy? The enthalpy of mixing will now have a finite value, either favoring \(\Delta H^{mix} < 0 \) or disfavoring \(\Delta H^{mix} > 0 \) mixing of the two components. The simplest model of a solution with finite interactions is called the regular solution model:

\[
\Delta U^{mix} = (\text{ENERGY}) \left(\frac{\text{CHANGE DUE TO A-B CONTACTS}}{\text{CONTACTS}} \right) = \Omega (X_A X_B)
\]

\(\Omega \) is the interaction parameter in J/mole (independent of \(T \)).

Probability of an A-B contact: \(X_A \left(\frac{1}{Z} \right) X_B \)

- Let the enthalpy of mixing take on a finite value given by:

\[
\Delta H^{mix} = \Delta U^{mix} + \Delta A V^{mix} \approx \Delta U^{mix}
\]

\((P \text{ is fixed}) \) Usually small.

- We take the entropy of mixing to be the same as in the ideal solution. This gives a total free energy of mixing which is:

\[
\Delta G^{mix, RS} = \Delta H^{mix, RS} - T \Delta S^{mix, IDEAL} = \Omega X_A X_B + RT \left[X_A \ln X_A + X_B \ln X_B \right]
\]
We can also use the equations above to determine the enthalpy, entropy, and Gibbs free energy of the regular solution:

\[
\Delta G^{\text{mix,RS}} = G^{\text{RS}} - G^{\text{unmixed}} = \Delta G^{\text{mix,RS}} + G^{\text{unmixed}} = \Omega X_A X_B + RT \left[X_A \ln X_A + X_B \ln X_B \right] + \mu_A^\circ X_A + \mu_B^\circ X_B
\]

\[
\bar{S}^{\text{RS}} = \left(\frac{\partial \bar{G}^{\text{RS}}}{\partial T} \right)_{P,n} = -R \left[X_A \ln X_A + X_B \ln X_B \right]
\]

\[
\bar{H}^{\text{RS}} = \bar{G}^{\text{RS}} + T \bar{S}^{\text{RS}} = \Omega X_A X_B + \mu_A^\circ X_A + \mu_B^\circ X_B
\]

- The regular solution model describes the liquid phase of many real systems such as Pb-Sn, Ga-Sb, and Ti-Sn, and some solid solutions. Today we will analyze the behavior of a system with this free energy function; in a few lectures we will show how the given forms of the enthalpy and entropy of mixing arise from consideration of molecular states (using statistical mechanics).

- Let's look at the behavior of regular solutions graphically. The plots below are all prepared for a binary system where the standard state chemical potentials are assumed to be approximately invariant with temperature (i.e., the endpoints of the free energy curves are not moving with temperature - approximately valid over certain temp. ranges for some solids):

\[
\mu_A^\circ = -2,000 \frac{j}{\text{mole}}
\]

\[
\mu_B^\circ = -1,000 \frac{j}{\text{mole}}
\]
- The free energy of the system varies both with the value of Ω and with temperature:
 - As a function of temperature at a fixed positive value of Ω.

$$G^{RS} = H^{RS} - TS^{RS}$$

Favors mixing

Common tangent endpoints move toward $x_B = 0$ and $x_B = 1$ axes.

$$\left(\frac{dG^{RS}}{dx_B}\right) = 0$$

$$\left(\frac{d^2G^{RS}}{dx_B^2}\right) < 0$$

$$\Omega = 7,000 \text{ J/mole}$$
Phase diagram of a regular solution

\(G_{\text{RS}} \rightarrow \text{SOLID PHASE } \alpha \)

\(T = T_{\text{M1}} \)

\(\Delta G_{\text{mix,RS}} \)

\(T_{\text{CUT}} < T < T_{\text{M1}} \)

\(\Delta G_{\text{mix,RS}} \)

\(T < T_{\text{CUT}} \)

\(\Delta G_{\text{mix,RS}} \)

\(\text{MISCEIBILITY GAP} \)

\(\rightarrow \text{SOLIDS OR LIQUIDS} \)

\(\alpha, \alpha_1, \alpha_2 \) \text{ HAVE SAME STRUCTURES}

\(\times \) \text{ BUT CHEMICALLY INCOMPATIBLE}

Lecture 19 – Binary systems 7 of 14 11/9/05
Eutectic systems

- It is commonly found that many materials are highly miscible in the liquid state, but have very limited mutual miscibility in the solid state. Thus much of the phase diagram at low temperatures is dominated by a 2-phase field of two different solid structures- one that is highly enriched in component A (the \(\alpha \) phase) and one that is highly enriched in component B (the \(\beta \) phase). These binary systems, with unlimited liquid state miscibility and low or negligible solid state miscibility, are referred to as eutectic systems.

 - The behavior just described, where the two components are completely miscible at high temperatures in the liquid state and phase-separated into two solids at low temperatures would be represented by a phase diagram as follows:

- Now the question is, what happens in the region between high and low temperatures?

- Let’s examine how the phase diagram of a eutectic system develops.

Free energy diagrams of eutectic systems

- Suppose we have a binary solution of A and B. The molar free energy for each phase can be diagrammed for as a function of composition, as we did for the simple ideal solution:(1)
Graphs by MIT OCW.
T_b = T_{EU}

P = Constant

Figure by MIT OCW.
Analyzing phase equilibria on eutectic phase diagrams

- Next term, you will learn how these thermodynamic phase equilibria intersect with the development of microstructure in materials:
Schematic representations of the equilibrium microstructures for a lead-tin alloy of composition C₄ as it is cooled from the liquid-phase region.

Figure by MIT OCW.
<table>
<thead>
<tr>
<th></th>
<th>structure A</th>
<th></th>
<th>structure B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>rhombohedral</td>
<td>Sn</td>
<td>tetragonal</td>
</tr>
<tr>
<td>Ag</td>
<td>FCC</td>
<td>Cu</td>
<td>FCC (lattice parameter: 4.09 Å at 298K)</td>
</tr>
<tr>
<td>Pb</td>
<td>FCC</td>
<td>Sn</td>
<td>tetragonal</td>
</tr>
</tbody>
</table>

Eutectic phase diagram for a silver-copper system.

Eutectic phase diagram for MgO-CaO system.

Figure by MIT OCW.
References