I. The winding number

Let \(R \subset \mathbb{R}^2 \) be an open region, let
\[
\begin{align*}
 x' &= F(x, y) \\
 y' &= G(x, y)
\end{align*}
\]
be an autonomous differential system on \(R \), and let \(C \subset R \) be an oriented, simpler closed curve in \(R \). In other words, \(C \) is the image of the circle under a 1-to-1 map whose derivative vector is always nonzero, say \(h : [0,1] \to R, h(1) = h(0) \).

If \(C \) contains no equilibrium point of the system, the following function is well-defined and continuous:
\[
f : C \to \delta^1 \subset \mathbb{R}^2, \quad f(q) = \frac{1}{\sqrt{F(q)^2 + G(q)^2}} \begin{bmatrix} F(q) \\ G(q) \end{bmatrix}.
\]

The composition \(foh : [0,1] \to \delta^1 \) is (essentially) a cts. map from the circle to the circle. To such a map there is an associated integer \(n \), the degree of the map. This integer counts the number of times \(foh(t) \) rotates counterclockwise around the circle as \(t \) rotates once counterclockwise around the circle. If \(h, F \) and \(G \) are all continuously differentiable function, \(g = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} \), and then the degree is simply
\[
\frac{1}{2\pi} \int_0^1 \left[g_1(t)g_2'(t) - g_1'(t)g_2(t) \right] dt
\]

This integer turns out to be independent of \(h(t) \) (although it does depend on the orientation of \(C \)). it is called the winding number of \((F,G)\) about \(C \).

Let \(p \in R \) be an equilibrium point. It is isolated if there exists \(\varepsilon > 0 \) such that \(p \) is the only equilibrium point in the \(\varepsilon \)-ball about \(p \). For any \(0 < q < \varepsilon \), consider the circle \(C_q \) of radius \(q \) centered at \(p \). The winding number of \((F,6)\) about \(C_q \) is independent of \(q \) and is called the index of \((F,6)\) at \(p \) (or sometimes the Poincare index).

Examples:

1. Let \(\lambda, \mu > 0 \) and let \(F = \lambda x, G = \mu y \). Then \(p = (0,0) \) is an isolated equilibrium point. Consider \(h_q(t) = \begin{bmatrix} q \cos(t) \\
 q \sin(t) \end{bmatrix} \), \(0 < t \)

Then \(g(t) = \frac{1}{\sqrt{\lambda^2 \cos^2(t) + \mu^2 \sin^2(t)}} \begin{bmatrix} \lambda \cos(t) \\
 \mu \sin(t) \end{bmatrix} \).
And \(g_1(t)g_2'(t) - g_1'(t)g_2(t) = \frac{\lambda \mu}{\lambda^2 \cos^2(t) + \mu^2 \sin^2(t)} \). This is closely related to the Poisson kernel. It is nontrivial, but the integral \(\int_0^{2\pi} \frac{\lambda \mu}{\lambda^2 \cos^2(t) + \mu^2 \sin^2(t)} dt \) can be computed by elementary methods, and it equals \(2\pi \) (consider the case that \(\lambda = \mu \)). So the index is +1.

(2) \(\lambda, \mu < 0 \). This is the same as above when \(\lambda \to -\lambda, \mu \to -\mu \). Notice the integral does not change. So the index is +1.

(3) \(\lambda < 0, \mu > 0 \). now the integral is \(-\int_0^{2\pi} \frac{(-\lambda)\mu}{(-\lambda)^2 \cos^2(t) + \mu^2 \sin^2(t)} dt \).

This is -1 times the integral from (1). So the index is -1.

Theorem: Let \(C \) be a simple closed curve that contains no equ. pts. in \(R \) oriented so the interior is always on the left. If the interior is contained in \(R \), and if the interior contains only finitely many equilibrium points, \(p_1, \ldots, p_n \), then the winding number about \(C \) is index \((p_1) + \ldots + \text{index}(p_n) \). (and 0 if there are no eq. pts).

Proof: This is proved, for instance in Theorem 3, § 11.9 on p.442 of Wilfred Kaplan, *Ordinary Differential Equations*, Addison-Wesley, 1958.

Corollary: If \(R \) is simply-connected, then every cycle \(C \) contained in \(R \) contains an equilibrium point in its interior.

Rmk: A region \(R \) in \(\mathbb{R}^2 \) is simply-connected if for every simple closed curve \(C \) in \(R \), the interior of \(C \) is contained in \(R \). A cycle is a periodic orbit (that is necessarily a simple closed curve).

Pf: By construction, \((F, 0) \) is parallel to the tangent vector of \(C \). Therefore the winding number is +1. So, by the theorem, there is an equilibrium point in the interior of \(C \).

II. Lyapunov functions

Let \(R \subset \mathbb{R}^n \) be an open region. Let \(\dot{x} = F(x) \) be an autonomous system on \(R \). Let \(p \in R \) be a point.

Definition: A function \(V : R \to \mathbb{R} \) is positive definite (resp. negative definite) if

1. \(V(q) \geq 0 \) (resp. \(V(q) \leq 0 \)) for all \(q \in R \)
2. \(V(q) = 0 \) iff \(q = p \).

Let \(p \) be an equilibrium point.
Definition: A strong Lyapunov function is a continuously differentiable function $V : \mathbb{R} \to \mathbb{R}$ such that

1. V is positive definite
2. the function $V' := \sum_{i=1}^{n} \frac{dV(x)}{dx_i} F_i(x)$ is negative definite.

Remark: It is often the case that there is no strong Lyapunov function on \mathbb{R}, yet there is an open subregion $\mathbb{R}' \subset \mathbb{R}$ containing p and a strong Lyapunov function on \mathbb{R}'. In this case, simply replace \mathbb{R} by \mathbb{R}' in what follows.

Hypothesis: Suppose a strong Lyapunov function exists. There is a minor issue that your book does not deal with: long-time existence of solution curves. Let $K \subset \mathbb{R}^n$ be a bounded closed region whose interior contains p and such that $K \subset \mathbb{R}^n$. Define $r_0 = \text{minimum of } V$ on the bounded closed set ∂K (a continuous function on a bounded closed subset of \mathbb{R}^n always attains a minimum). Because $p \in$ interior of K, $r_0 > 0$. Define \mathbb{R}' to be

$$\mathbb{R}' = KnV^{-1}\left([0, r_0]\right) = \left\{ q \in K \mid V(q) < r_0 \right\}.$$

Observe this is an open region in \mathbb{R} that contains p and is contained in the interior of K.

Theorem: (1) For every $x_0 \in \mathbb{R}'$, the solution curve $x(t)$ is defined for all $t > 0$.

(2) Moreover, $\lim_{t \to x} x(t) = p$. Therefore p is an attractor and \mathbb{R}' is in the basin of attraction of p.

Proof: For any $x_0 \in \mathbb{R}$, if $x(t)$ is defined on the interval $[0, t_1)$, consider $V(x(t))$ defined on $[0, t_1)$. By the Chain Rule, $V(x(t))$ is differentiable and

$$\frac{d}{dt} V(x(t)) = \sum_{i=1}^{n} \frac{\partial V(x(t))}{\partial x_i} \frac{dx_i(t)}{dt}.$$

By hypothesis, $x'_i(t) = F_i(x(t))$. Thus $\frac{d}{dt} V(x(t)) = V'(x(t))$.

By hypothesis, this is nonpositive. Therefore $V(x(t))$ is a non-increasing function. In particular, if $x_0 \in \mathbb{R}'$, then $x(t)$ is in \mathbb{R}' for all $t \in [0, t_1)$.

(1) Let $x_0 \in \mathbb{R}'$. By way of contradiction, suppose that $x(t)$ is defined only on $[0, t_1)$ where t_1 is finite. By the theorem on maximally extended solutions, $\lim_{t \to t_1} x(t)$ exists and is in ∂K. Therefore $V(\lim_{t \to t_1} x(t)) \geq r_0$. Since V is continuous

$$V(\lim_{t \to t_1} x(t)) = \lim_{t \to t_1} V(x(t)).$$

For all $t \geq 0$, $V(x(t)) \leq V(x_0) < r_0$.

So $\lim_{t \to t_1} V(x(t)) \leq V(x_0) < r_0$. This contradiction proves $x(t)$ is defined for all $t > 0$.

18.034, Honors Differential Equations

Prof. Jason Starr
(2) Let $\varepsilon > 0$ and let $B_{\varepsilon}(p)$ denote the open ball of radius ε centered at p. The set difference $K \setminus (KnB_{\varepsilon}(p))$ is closed and bounded. Therefore V attains a minimum value r_1 on this set. Since p is not in this set $r_1 > 0$. Also,
$KnV^{-1}([r_1, \infty))$ is a closed set contained in K. So it is closed and bounded (K is bounded). Therefore V' attains a maximum value $-m_1$ on this set. Since p is not in this set $-m_1 < 0$, i.e. $m_1 > 0$.

Define $t_1 = \frac{r_0 - r_1}{m_1}$.

The claim is that for all $x_0 \in R$, $V(x(t)) < r_1$ for all. In particular, since $x(t) \in R'$ & $V(x(t)) < r_1$, $x(t)$ is in $R' \cap B_{\varepsilon}(p)$. By way of contradiction, suppose $V(x(t)) \geq r_1$. By the mean value theorem, there exists t' with $0 < t' < t$ such that $V(x_0) - V(x(t)) = V(x(t')) \cdot t$. Since $V(x(t)) \geq r_1$, also $V(x(t')) \geq r_1$.

Therefore $x(t') \in KnV^{-1}([r_1, \infty))$.

Thus $V'(x(t)) \geq m_1$. So $V(x_0) - V(x(t)) \geq m_1 t > m_1 t_1 = r_0 - r_1$. But $V(x_0) < r_0$ and $V(x(t)) \geq r_1$. This is a contradiction, proving $V(x(t)) < r_1$ for all $t > t_1$.

The definition of a weak Lyapunov function as well as the statements of Lyapunov's second and third theorems are in the textbook.

III. A criterion for asymptotic stability.

Let V be a real vector space of dimension n, eg. \mathbb{R}^n. Let $R \subset V$ be an open region, and let $\dot{x} = F(x)$ be an autonomous system on R. Let $p \in R$ be an equilibrium point.

Theorem: If F is differentiable at p, and if every eigenvalue of $\left[\frac{\partial F_i}{\partial x_j} \right]_p$ has negative real part, then there is an open region $R' \subset R$ contains p and a story Lyapunov function on R'.

Proof: There is a beautiful proof in the first edition of the textbook, which is stapled at the end. Here we give a closely related, but different argument.

The Jacobian of F at p is a linear transformation $T : V \rightarrow V$ with the property that, for my norm $\| \cdot \|$ on V, for every $\varepsilon > 0$, $\exists \varepsilon > 0$ such that if $\|V\| < \varepsilon^2$, then $\left\| F(p) + \varepsilon^2 T \right\| < \varepsilon$. Notice this is independent of the system of coordinates on V. Without loss of generality, translate so $p = 0$.

As we have alluded to earlier in the semester, for each real vector space V there is an associated complex vector space V_c defined as a set to be $V \times \mathbb{C}$ with elements (v, w) written $v + iw$. The addition is defined component-by-component. And for
each complex number \(\alpha + i\beta \), \((\alpha + i\beta) \cdot (\nu + i\nu)\) is defined to be \((\alpha\nu - \beta\nu) + i(\beta\nu + \alpha\nu)\).

The original vector space \(V \) is a subset by \(\nu \mapsto \nu + i\cdot 0 \). And \(T : V \to V \) extends to a \(\mathbb{C} \)-linear transformation \(T : V \to V \) by \(T(v + iw) = T(v) + iT(w) \).

By the Jordan normal form theorem, there exists a direct sum decomposition \(V \cong V_1 \oplus \cdots \oplus V_m \) and for each \(i = 1, \ldots, m \) an ordered basis \(B_i \) for \(V_i \) s.t.
(1) for each \(i = 1, \ldots, m \), \(T_i(V_i) \subseteq V_i \)
(2) the corresponding linear transformation \(T_i : V_i \to V_i \) has matrix

\[
[T_i]_{B_i,B_i} = \begin{bmatrix} \lambda \\ 0 \end{bmatrix}
\]

for some \(\lambda \).

For any nonzero \(\alpha \in \mathbb{C} \), there is also a basis \(B_{i,\alpha} \) s.t.

\[
[T_i]_{B_{i,\alpha},B_{i,\alpha}} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}.
\]

Indeed, if \(B_i = (v_1, \ldots, v_m) \), then \(B_{i,\alpha} = (v_1, \alpha v_2, \alpha^2 v_3, \ldots, \alpha^{m-1} v_m) \).

For each ordered basis \(B \) for \(V_i \), there is a “dual basis of coordinates” \(x_1, \ldots, x_m : V_i \to \mathbb{C} \) s.t.

\(V = x_1(v)v_1 + \ldots + x_m(v)\cdot v_m \) for every \(v \in V_i \) (\(B = (v_1, \ldots, v_m) \)). There is a corresponding Hermition inner product,

\[
\langle v, w \rangle_B : V_i \times V_i \to \mathbb{C}
\]

\[
\langle v, w \rangle_B = \sum_{i=1}^{m} x_i(v) \overline{x_i(w)}.
\]

In particular, this is bilinear, positive definite and \(\langle w, v \rangle_B = \langle v, w \rangle_B \).

And \(\langle T_i v, v \rangle_{B_{i,\alpha}} = \lambda|x_1|^2 + \alpha_1 x_2 \overline{x_2} + \lambda|x_2|^2 + \alpha_2 x_3 \overline{x_3} + \ldots + \alpha_{m-1} x_m \overline{x_m} + \lambda|x_m|^2 \).

Lemma 1: For each \(n \), the function on \(\mathbb{C}^n \),

\[
(x_1, \ldots, x_n) \mapsto |x_1|^2 - |x_1||x_2| + |x_2|^2 + \ldots + |x_k|^2 - |x_k||x_{k+1}| + |x_{k+1}|^2 + \ldots - |x_{n-1}||x_n| + |x_n|^2
\]

\[
= \sum_{k=1}^{n-1} |x_k|^2 - |x_k||x_{k+1}| + |x_{k+1}|^2
\]

is positive definite.

Proof: it is simply \(\frac{1}{2}|x_1|^2 + \frac{1}{2} \sum_{k=1}^{n-1} (|x_k| - |x_{k+1}|)^2 + \frac{1}{2}|x_n|^2 \).
Since it is a sum of squares, it is nonnegative. It is zero iff \(|x_1| = 0, |x_2| = |x_1| = 0, \ldots, |x_n| = |x_{n-1}| = 0\) and \(|x_n| = 0\), i.e. \(|x_1| = \ldots = |x_n| = 0\).

Lemma 2: If \(R_e(\lambda) < 0\) and if \(|\alpha| < -R_e(\lambda)\), then \(2R_e < T \nu, \nu >_{\beta, \alpha}\) is negative definite.

Moreover, \(2R_e < T \nu, \nu >_{\beta, \alpha} \leq 2(R_e(\lambda) + |\alpha|) \left(|x_1|^2 + \ldots + |x_n|^2 \right)\).

Proof: \(2R_e < T \nu, \nu >_{\beta, \alpha} = 2R_e(\lambda) \left(|x_1|^2 + \ldots + |x_n|^2 \right) + 2R_e(\alpha x_1 \overline{x_2} + \ldots + \alpha x_{n-1} \overline{x_n}) \leq 2R_e(\lambda) \left(|x_1|^2 + \ldots + |x_n|^2 \right) + 2|\alpha| \left(|x_1| |x_2| + \ldots + |x_{n-1}| |x_n| \right) = 2(R_e(\lambda) + |\alpha|) \left(|x_1|^2 + \ldots + |x_n|^2 \right) - |\alpha| \left(|x_1|^2 - |x_1| |x_2| + |x_2|^2 + \ldots + |x_{n-1}| |x_n| + |x_n|^2 \right) \)

By Lemma 1, \(-|\alpha| \left(|x_1|^2 - |x_1| |x_2| + |x_2|^2 + \ldots + |x_{n-1}| |x_n| + |x_n|^2 \right)\) is negative definite. Because \(R_e(\lambda) + \alpha < 0\), also \(2(R_e(\lambda) + |\alpha|) \left(|x_1|^2 + \ldots + |x_n|^2 \right)\) is negative definite.

For each \(i = 1, \ldots, n\), let \(R_e(\lambda) > \varepsilon_i > 0\). Let \(|x_i| + R_e(\lambda) < -\varepsilon_i\), i.e. \(0 < \varepsilon_i < |R_e(\lambda)| - \varepsilon_i\).

Define the function \(\|\|^2\) by \(\|v_1 + \ldots + v_n\|^2 = \sum_{i=1}^{n} <v_i, v_i>_{B_i, \alpha}\) where \(v_i \in V_i\).

This is a positive definite function. Moreover, \(\|\| := \sqrt{\|\|^2}\) is a norm. Therefore there is a \(\delta > 0\) s.t. if \(\|v\| < \delta\), then \(F(v) - T \nu \leq \min (\varepsilon_1, \ldots, \varepsilon_n) \|v\|\).

Now \(\frac{d}{dt} \|x(t)\|^2 = 2R_e < F(x), x(t) > = \sum_{i=1}^{n} 2R_e < T_i x, x > + 2R_e < F(x) T \nu, \nu >\)

So \(2R_e < F(x), x > \leq \sum_{i=1}^{n} 2R_e < T_i x, x > + \left(F(x) - T_x \right) \|x\| \).

By Lemma 2, this is \(\leq -2 \min (\varepsilon_1, \ldots, \varepsilon_n) \|x\|^2 + \left(F(x) - T_x \right) \|x\|\)

If \(\|x\| < \delta\), this is \(\leq -2 \min (\varepsilon_1, \ldots, \varepsilon_n) \|x\|^2 + \min (\varepsilon_1, \ldots, \varepsilon_n) \|x\|^2 = -\min (\varepsilon_1, \ldots, \varepsilon_n) \|x\|^2\)

So this is negative semidefinite. Therefore \(\|\|^2\) is a strong Lyapunov function on the ball of radius \(R\) centered at \(p\).