In these notes we discuss techniques for counting, coding and sampling some classes of objects. We start by presenting several classes of objects counted by the Catalan sequence $C_n = \frac{1}{n+1} \binom{2n}{n}$. This is an occasion to present several bijective techniques for counting, and simply beautiful mathematics. We then discuss some algorithmic application of (bijective) counting: some coding and random sampling algorithms.

1 Some Catalan families

We start by defining three classes of objects, and then discuss the relation between them.

A plane tree (a.k.a. ordered tree) is a rooted tree in which the order of the children matters. Let T_n be the set of plane trees with n edges. The set T_3 is represented in Figure 1. A binary tree is a plane tree in which vertices have either 0 or 2 children. Vertices with 2 children are called nodes, while vertices with 0 children are called leaves. Let B_n be the set of binary trees with n nodes. The set B_3 is represented in Figure 2. A Dyck path is a lattice path (sequence of steps) made of steps +1 (up steps) and steps -1 (down steps) starting and ending at level 0 and remaining non-negative. Since the final level of a Dyck path is 0 the number of up steps and down steps are the same, and its length is even. Let D_n be the set of Dyck paths with $2n$ steps. The set D_3 is represented in Figure 3.
Observe that there is the same number of elements in T_3, B_3 and D_3. This is no coincidence, as we will now prove that for all n, the sets T_n, B_n, D_n have the same number of elements. We now use the notation $|S|$ to denote the cardinality of a set S. We will now prove that

$$|T_n| = |B_n| = |D_n| = \frac{1}{n+1}\binom{2n}{n}.$$

The number $\frac{1}{n+1}\binom{2n}{n}$ is the so-called nth Catalan number.

1.1 Counting Dyck paths

We first compute the number of Dyck paths. Let $\mathcal{P}_n^{(0)}$ be the set of paths of length $2n$ made of steps +1 steps and -1 steps starting and ending at level 0. Ending at level 0 is the same as having the same number of up steps and down steps, and any choice of order of such steps is allowed. Hence

$$\mathcal{P}_n^{(0)} = \binom{2n}{n}.$$

Now \mathcal{D}_n is a subset of $\mathcal{P}_n^{(0)}$. It seems hard to find $|\mathcal{D}_n|$ because of the non-negativity constraint, but actually a trick will now allow us to compute the cardinality of the complement subset

$$\mathcal{D}_n \equiv \mathcal{P}_n^{(0)} \setminus \mathcal{D}_n.$$

Indeed we claim that $|\mathcal{D}_n| = \binom{2n}{n-1}$. To prove this claim we consider the set $\mathcal{P}_n^{(-2)}$ of paths of length $2n$ made of steps +1 steps and -1 steps starting at level 0 and ending at level -2. These paths have $n-1$ up steps and $n+1$ down steps, and any order of steps is possible, hence $|\mathcal{P}_n^{(-2)}| = \binom{2n}{n-1}$. So it suffices to give a bijection f between \mathcal{D}_n and $\mathcal{P}_n^{(-2)}$. This bijection is defined as follows: take a path D in \mathcal{D}_n consider the first time t it reaches level -1. The path $f(D)$ is obtained from D by flipping all the steps after time t with respect to the line $y = -1$. An example is shown in Figure 4. We let the reader check that f is a bijection between \mathcal{D}_n and $\mathcal{P}_n^{(-2)}$. Since f is a bijection we have $|\mathcal{D}_n| = |\mathcal{P}_n^{(-2)}| = \binom{2n}{n-1}$.

![Figure 4: The bijection f: the path $D \in \mathcal{D}$ in red, the path $f(D) \in \mathcal{P}_n^{(-2)}$ in black.](image)

By the preceding, we have

$$|\mathcal{D}_n| = |\mathcal{P}_n^{(0)}| - |\mathcal{D}_n| = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{n!n!} - \frac{(2n)!}{(n+1)!(n-1)!}.$$
And by reducing to the same denominator we find

\[|D_n| = \frac{(2n)!}{n+1!n!} = \frac{1}{n+1} \binom{2n}{n}, \]

as wanted.

1.2 Bijection between plane trees, binary trees and Dyck paths

We now present bijections between the sets \(T_n, B_n \) and \(D_n \).

We first present a bijection \(\Phi \) between plane trees and Dyck paths as follows: given any tree \(T \) in \(T_n \), perform a depth-first search of the tree \(T \) (as illustrated in Figure 5) and define \(\Phi(T) \) as the sequence of up and down steps performed during the search. A Dyke path is obtained from \(T \) because \(\Phi(T) \) has \(n \) up steps and \(n \) down steps (one step in each direction for each edge of \(T \)), starts and end at level 0 and remains non-negative. Because \(\Phi \) is a bijection between \(T_n \) and \(D_n \), we conclude

\[|T_n| = |D_n| = \frac{1}{n+1} \binom{2n}{n}. \]

![Figure 5: A plane tree \(T \) and the associated Dyck path \(\Phi(T) \). The depth-first search of the tree \(T \) is represented graphically by a tour around the tree (drawn in orange).](image)

We now present a bijection \(\Psi \) between binary trees and Dyck paths. Let \(B \) be a binary tree in \(B_n \). The tree \(B \) has \(n \) nodes. It can be shown that it has \(n+1 \) leaves (do it!). We can perform a depth-first search of the tree \(B \) and make a up step the first time we encounter each node and a down step each time we encounter a leaf. This makes a path with \(n \) up steps and \(n+1 \) down steps. The last step is a down step and we ignore it. We denote by \(\Psi(B) \) the sequence of \(n \) up steps and \(n \) down steps obtained in this way. An example is represented in Figure 6. It is actually true that \(\Psi(B) \) is always a Dyck path and that \(\Psi \) is a bijection between \(B_n \) and \(D_n \). We omit the proof of these facts. Since the sets \(B_n \) and \(D_n \) are in bijection we conclude

\[|B_n| = |D_n| = \frac{1}{n+1} \binom{2n}{n}. \]

2 Coding

Let \(S \) be a finite set of objects. A coding function for the set \(S \) is a function which associate a distinct binary sequence \(f(s) \) to each element \(s \) in \(S \). The binary sequence \(f(S) \) is called code of \(S \). Here are lower bounds for the length of codes.

Count-3
Figure 6: A binary tree B and the associated Dyck path $\Psi(B)$. The depth-first search of the tree B is represented graphically by a tour around the tree (drawn in orange).

Lemma 1. If S contains N elements then at least one of the codes has length greater or equal to $\lfloor \log_2(N) \rfloor$. If one consider the uniform distribution for elements in S then the codes have length at least $\log_2(N) - 2$ in average.

Exercise: Prove Lemma 1 for $N = 2^k - 1$.

Example 1: coding permutations. Let S_n be the set of permutations of $\{1, 2, \ldots, n\}$. We now discuss a possible coding function f for the set S_n. Recall that for any integer i, the binary representation of i is $\left\lceil \log_2(i + 1) \right\rceil$. Thus each number $i \in \{1, 2, \ldots, n\}$ can be represented uniquely by binary sequences of length exactly $\left\lceil \log_2(n + 1) \right\rceil$: it suffice to take their binary representations and add a few 0 in front if necessary to get this length. Let $\pi \in S_n$ be a permutation seen as a sequence of distinct numbers $\pi = \pi_1 \pi_2 \ldots \pi_n$. One can define $f(\pi)$ as the concatenation of the binary sequences (of length $\left\lceil \log_2(n + 1) \right\rceil$) corresponding to each number $\pi_1 \pi_2 \ldots \pi_n$. Then the length of the code $f(\pi)$ is $n \left\lceil \log_2(n + 1) \right\rceil \sim n \log_2(n)$. We can recover the permutation from the code: if one has the code, it can cut it in subsequences of length $\log_2(n + 1)$ each and then recover the numbers $\pi_1 \pi_2 \ldots \pi_n$ making the permutation. Is it an efficient coding? Well according to Lemma 1 we cannot achieve codes shorter than $\log_2(n!) - 2$ in average. Moreover, $\log_2(n!) \sim n \log_2(n)$. Therefore our coding function f has length as short as possible asymptotically.

Example 2: coding Dyck paths. Consider the set D_n of Dyck path of length $2n$. There is an easy way of coding a Dyck path $D \in D_n$ by a binary sequence of length $2n$. Simply encode down steps by “0” and up steps by “1” this give a binary sequence $f(D)$ of length $2n$. Could we hope for shorter codes? Certainly it would be possible to get a code of length $2n - 2$ because the first step is an up step and the last step is a down step, so these could be ignored. But could we do better than $2n + o(n)$ (where the “little o” notation means that the expression divided by n goes to zero as n goes to infinity)? We have seen that the set D_n has cardinality $N = \frac{2n!}{n!(n+1)!}$. Using the Stirling formula

$$n! \sim \sqrt{2n \pi} \left(\frac{n}{e} \right)^n$$

one gets $\log_2(n!) = n \log_2(n) - n \log_2(e) + o(n)$. Hence one can compute

$$\log_2(N) = \log_2(2n!) - \log_2(n!) - \log_2((n + 1)!) = 2n + o(n).$$

Therefore, by Lemma 1 one cannot encode Dyck paths by codes of length less than $2n + o(n)$ on average. So our naive coding is asymptotically optimal. Observe that this also gives a way of coding plane trees or binary trees optimally.
3 Random sampling

Let S be a finite set of objects. A (uniformly random) sampling algorithm for the set S is an algorithm which outputs an element in S uniformly at random from S. Here we suppose we dispose of a perfect random generator for integers. More precisely, let us suppose that one can generate a uniformly random integer in $\{1, 2, \ldots, n\}$ for any integer n.

Example 1: sampling permutations. How to sample a permutation in S_n? Here is a solution written in pseudo-code.

<table>
<thead>
<tr>
<th>Input</th>
<th>an integer n.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Initialize an array V of size n with value i at position i for $i = 1 \ldots n$.</td>
</tr>
<tr>
<td></td>
<td>• For $i = 1$ to n do</td>
</tr>
<tr>
<td></td>
<td>Choose an integer r uniformly at random in ${i, i + 1, \ldots, n}$.</td>
</tr>
<tr>
<td></td>
<td>Swap the values at position i and r in V.</td>
</tr>
<tr>
<td>Output</td>
<td>the array V.</td>
</tr>
</tbody>
</table>

The output of the above algorithm is an array of number which corresponds to a uniformly random permutation. Indeed, the first number of the array is chosen uniformly in $\{1, 2, \ldots, n\}$, the second number in the array is chosen uniformly randomly from the remaining numbers etc. Thus the above algorithm is indeed a sampling algorithm for the set S_n.

Example 2: sampling Dyck paths. Sampling Dyck paths is a bit more difficult. We will need to first define an algorithm for sampling paths from another set. Let $P_n^{(-1)}$ be the set of paths of length $2n + 1$ with steps $+1$ and -1 starting at level 0 end ending at level -1. Hence a path $P \in P_n^{(-1)}$ has steps "+1" and $n + 1$ steps ",-1" in any order. Here is a sampling algorithm for the set $P_n^{(-1)}$.

<table>
<thead>
<tr>
<th>Input</th>
<th>an integer n.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Initialize an array V of length $2n + 1$ with value 1 in the first n entries and value -1 in the remaining $n + 1$ entries.</td>
</tr>
<tr>
<td></td>
<td>• For $i = 1$ to $2n + 1$ do</td>
</tr>
<tr>
<td></td>
<td>Choose an integer r uniformly at random in ${i, i + 1, \ldots, 2n + 1}$.</td>
</tr>
<tr>
<td></td>
<td>Swap the values at position i and r in V.</td>
</tr>
<tr>
<td>Output</td>
<td>the array V.</td>
</tr>
</tbody>
</table>

Because the algorithm randomly permutes the steps $+1$ and -1, it indeed outputs a uniformly random path in $P_n^{(-1)}$.

Now we will show how to obtain an Dyck path $D \in D_n$ from a path $P \in P_n^{(-1)}$. The trick we will use is known as the cycle lemma. Let $P \in P_n^{(-1)}$. Let $\ell \leq 0$ be the lowest level of the path P, and let t be the first time the level ℓ is reached. This decomposes P as P_1P_2 where P_1 is the path before time t and P_2 is the path after time t. Now consider the path P_2P_1. This path is ending with a -1 step. Then we define $g(P)$ as the path obtained from P_2P_1 by ignoring the last step. The mapping g is illustrated in Figure 7. The path $g(P)$ has n up steps and n down steps so it ends at level 0. In fact we claim that it is a Dyck path. Here is an even stronger claim.

Lemma 2. For any path P is $P \in P_n^{(-1)}$, the path $g(P)$ is a Dyck path. So g maps the set $P_n^{(-1)}$ to the set D_n. Moreover, any Dyck path in D_n is the image of exactly $2n + 1$ paths in $P_n^{(-1)}$.

Count-5
Figure 7: A path $P \in \mathcal{P}_n^{(-1)}$ and the resulting $g(P)$.

We will not prove this Lemma. However we argue that this gives a way of sampling Dyck paths. Indeed, by the above algorithm, one can sample a path P in $\mathcal{P}_n^{(-1)}$, and then apply the mapping g to obtain a Dyck path $g(P)$. Since every path in $\mathcal{P}_n^{(-1)}$ has the same probability of being sampled and every Dyck path in \mathcal{D}_n has the same number of preimages, every Dyck path in \mathcal{D}_n has the same probability of being sampled. We have thus found a sampling algorithm for Dyck paths. Observe that this also gives a way of sampling plane trees or binary trees.