18.704 Fall 2004 Homework 8 Solutions

All references are to the textbook “Rational Points on Elliptic Curves” by Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more challenging exercises that are optional but not required.

1. A nonsingular projective conic with at least one point over the field \(\mathbb{F}_p \) has exactly \(p + 1 \) projective points; the reason is that one can project onto a line as is argued on page 109 of the text. In this problem we see that the same is not true for singular conics. Let \(p \neq 2 \) be a prime, and let \(C \) be the conic given by the homogeneous equation \(C : aX^2 + bXY + cY^2 = dZ^2 \) where \(a, b, c, d \in \mathbb{F}_p \) and \(a, b, d \neq 0 \). Let \(\#C(\mathbb{F}_p) \) be the number of points on \(C \) in projective space over \(\mathbb{F}_p \).

(a) Note that \(C \) is the given by the vanishing of \(F(X, Y, Z) = aX^2 + bXY + cY^2 − dZ^2 \) in \(\mathbb{P}^2 \). Recall that \(C \) is nonsingular at a point as long as not all partial derivatives of \(F \) vanish there. Show that \(C \) is nonsingular if and only if \(b^2 = 4ac \).

(b) Assume that \(C \) is singular. Then do Exercise 4.1(b) from the text. For \(p = 3 \), find choices of \(a, b, c, d \) for which each possibility occurs.

Solution. (a) The partial derivatives are \(\frac{\partial F}{\partial X} = 2aX + bY \), \(\frac{\partial F}{\partial Y} = bX + 2cY \), and \(\frac{\partial F}{\partial Z} = −2dZ \). If all of these are zero at a point, then (since we assume \(d \neq 0 \) and \(p \neq 2 \)), \(Z = 0 \). Then \(aX^2 + bXY + cY^2 = 0 \) and \(2aX + bY = 0 \), so \(Y = −2ab^{-1}X \), so \(aX^2 + 2aX^2 + 4ca^2b^{-2}X^2 = 0 \). If \(X = 0 \), and then \(Y = 0 \), but \([0, 0, 0] \) is not a point in projective space, so this is a contradiction. Thus \(−a + 4ca^2b^{-2} = 0 \), so \(4ca^2 − ab^2 = 0 \) and so (since \(a \neq 0 \)) \(4ca − b^2 = 0 \). The converse is similar.

(b) Since \(C \) is singular, by part (a) we have \(b^2 − 4ac = 0 \). The reason this is special is that the left hand side of our equation factors:

\[
aX^2 + bXY + cY^2 = (2aX − bY)(2aX − bY) = dZ^2.
\]

First we count the points at infinity. So if \(Z = 0 \), then \(2aX = bY \). So \([b, −2a, 0] \) is a point at infinity, and since scalar multiples give the same point of projective space, this is the only point at infinity.

Now we may assume \(Z = 1 \) and look for affine points \((x, y)\) with \((2ax − by)^2 = d \). If \(d \) is not a square in \(\mathbb{F}_p \), then this has no solutions. So in this case the
point at infinity is the only solution and \(\#C(F_p) = 1 \). Otherwise, \(d \) is a nonzero square in \(F_p \), say \(d = c^2 \). Then \(2ax - by = \pm c \). Since we assume \(b \neq 0 \), for each possible choice of \(x \), we get the two solutions \(y = b^{-1}(2ax \pm e) \). Since \(x \) can vary over the \(p \) elements of \(F_p \), we get \(2p \) affine points this way (note that the two elements \(2ax \pm e \) are always distinct, otherwise \(2e = 0 \) and since \(p \neq 2, e = 0 \), a contradiction.) Adding in the point at infinity, we get \(2p + 1 \) points total on \(C \).

When \(p = 3 \), we get both possibilities by choosing \(d = 1 \) (a square) and \(d = 2 \) (not a square). So (for example) \(C : X^2 + 2XY + Y^2 = Z^2 \) has 7 solutions in \(F_3 \), but \(C : X^2 + 2XY + Y^2 = 2Z^2 \) has 1 solution in \(F_3 \).

2. (a) Let \(C \) be the projective curve \(x^3 + y^3 + z^3 = 0 \) which is the subject of Gauss’s theorem. Calculate \(\#C(F_p) \) for \(p = 307 \) (you don’t need a computer; see the suggestions on page 118.)

(b) Let \(p \) be a prime with \(p \equiv 2(\text{mod} \ 3) \), and let \(c \in F_p \). Prove that the curve \(C : y^2 = x^3 + c \) satisfies \(\#C(F_p) = p + 1 \).

Solution. (a) By the result of Gauss’s Theorem, \(\#C(F_p) \) is equal to \(p + 1 + A \), where \(4p = A^2 + 27B^2 \) and \(A \) is congruent to 1 mod 3. So we need to find \(A \) and \(B \) where \(p = 307 \). As discussed on page 118, \(p + 1 + A \) is always divisible by 9. So \(A \equiv 7(\text{mod} \ 9) \). We try \(A = 7, 16, 23, \ldots \). If \(A = 7 \), then \(27B^2 = 1079 \), but 1079 is not a multiple of 27. Trying \(A = 16 \), then \(27B^2 = 972 \), and \(B^2 = 36 \) and \(B = 6 \) so we’re done: \(4(307) = 16^2 + 27(6)^2 \). So \(\#C(F_p) = 308 + 16 = 324 \).

(b) As we saw in the proof of Gauss’s Theorem, for a prime \(p \) which is not congruent to 1 mod 3, every element of \(F_p \) has a unique cube root. Therefore as \(x \) varies over the elements in \(F_p \), \(x^3 + c \) varies over all of the elements of \(F_p \). Now if \(p = 2 \) then the result can be checked directly, so assume from now on that \(p \) is an odd prime. Then if \(x^3 + c \) is a nonzero square in \(F_p \) then there will be two points of the form \((x, y)\) on \(C \); if \(x^3 + c = 0 \) then there is one corresponding point \((x, 0)\) on \(C \); and if \(x^3 + c \) is not a square then there are no points on \(C \) with that \(x \)-coordinate. Now since \(p \) is odd, exactly \(1/2 \) of the elements of \(F_p^* \) are squares. So we get \(2(1/2)(p - 1) + 1 = p \) points on the curve in the affine plane. Throwing in the point at infinity \(O \), we get \(p + 1 \) points on \(C \).

3. In this exercise we work over \(\mathbb{Q} \), and revisit points of finite order again using reduction modulo \(p \) as a tool. The equation we are interested in is

\[
C : y^2 = x^3 + bx \quad \text{for some nonzero} \ b \in \mathbb{Z}.
\]

Let \(\Phi \subset C(\mathbb{Q}) \) be the subgroup consisting of all rational points of finite order on \(C \).

(a) In Exercise 4.8, p. 142, it is shown that if \(p \) is any prime number such that \(p \equiv 3 \ (\text{mod} \ 4) \), and \(b \) is not equal to 0 in \(F_p^\times \), then the curve \(C : y^2 = x^3 + bx \)
satisfies \(\#C(\mathbb{F}_p) = p + 1 \). Assume this without proof, and use it to show that the order of the group \(\Phi \) is 2 or 4.

(b) Recall from section III.4 that the multiplication by 2 map on \(C \) is decomposed as a composition \(\psi \circ \phi \) where \(\phi : C \rightarrow \overline{C} \) and \(\psi : \overline{C} \rightarrow C \) are given by explicit formulas on p. 79. Use these formulas to show that there exists a rational point \(P \in C \) such that \(2P = (0, 0) \) if and only if \(b = 4d^4 \) for some integer \(d \).

(c) Show that the group structure of \(\Phi \) is given precisely by the following table:

\[
\Phi = \begin{cases}
\mathbb{Z}/4\mathbb{Z} & \text{if } b = 4d^4 \text{ for some } d \in \mathbb{Z} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } -b \text{ is a square} \\
\mathbb{Z}/2\mathbb{Z} & \text{otherwise.}
\end{cases}
\]

Solution. By exercise 4.8 which we were asked to quote, it follows that \(C(\mathbb{F}_p) = p + 1 \) for all \(p \) which are congruent to 3 mod 4 and which do not divide \(b \). Then by the reduction mod \(p \) theorem in Section IV.3, we see that \(N = |\Phi| \) divides \(p + 1 \) for all primes \(p \equiv 3(\text{mod } 4) \) such that \(p > b \). Rephrasing, we have that every prime greater than \(b \) which is congruent to 3 mod 4 is also congruent to \(-1 \mod N \). I hope your intuition told you this is not likely to happen if \(N \) is not equal to 1, 2, or 4.

To actually prove what we want, we can quote a famous theorem (Sorry not to warn you about this.) Dirichlet proved in the 1800’s that every arithmetic progression \(\{an + b|n \in \mathbb{N}\} \), where \(a \) and \(b \) are positive integers with \(\gcd(a, b) = 1 \), contains infinitely many prime numbers. So we see that if \(N \geq 5 \), then there are infinitely many primes in the progression \(\{4Nn + 3|n \geq 1\} \), and these are all primes which are congruent to 3 mod 4, but congruent to \(3 \neq -1(\text{mod } N) \). This is a contradiction to what we showed above. So \(N \leq 4 \). But now \(N = 3 \) and \(N = 1 \) are no good, since we know that \(\Phi \) has the point \((0, 0)\) of order 2. So \(N = 2 \) or 4.

(b). Let \(\overline{C} \) be the curve \(y^2 = x^3 - 4bx \), and let \(\phi : C \rightarrow \overline{C} \) and \(\psi : \overline{C} \rightarrow C \) be the maps given in Section III.4. Suppose \(P \in C \) is a point such that \(2P = (0, 0) \). Suppose \(Q = (w, z) \in \overline{C} \) such that \(\psi(Q) = (0, 0) \). Examining the formula for \(\psi \), we see that this implies that \(Q = (w, 0) \) for some nonzero \(w \) such that \(w^2 = 4b \). So \(b \) is a square; write \(b = f^2 \) for some integer \(f \geq 1 \). Now we also must have a point \(P = (x, y) \in C \) such that \(\phi(P) = Q = (w, 0) \). Examining the formula for \(\phi \), we see that if \(y = 0 \) then \(\phi(P) \in \{T, O\} \). So \(y \neq 0 \), and this implies by the formula that \(w \) is a perfect square, say \(w = e^2 \). Then \(w^2 = e^4 = 4b \). So \(16b = 4e^4 \) and then writing \(e = 2d \), we have \(b = 4d^4 \) as required. Conversely, if \(b = 4d^4 \) for some integer \(d \) then one may check that setting \(P = (2d^2, 4d^3) \), we have \(2P = (0, 0) \).

(c). By Part (a), we have \(|\Phi| = 2 \) or \(|\Phi| = 4 \).
Suppose that \(\Phi \) contains 4 points of order dividing 2. We know the points of order 2 are exactly those points with 0 y-coordinate, and there exists such a rational point other than \((0, 0)\) if and only if \(0 = x(x^2 + b)\) has a nonzero solution for \(x\), i.e. \(-b = d^2\) is a square. In this case we get \(\Phi = \{(\pm d, 0), (0, 0), \mathcal{O}\} \), and since every point has order dividing 2, we must have \(\Phi \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \). This is line 2 of the table.

So we may assume now that the only rational points of order dividing 2 on \(C\) are \((0, 0)\) and \(\mathcal{O} \). Suppose however that still \(|\Phi| = 4\). Then \(\Phi \) must be cyclic of order 4, and there is some rational point \(Q\) with \(\Phi = \{Q, (0, 0), 3Q, \mathcal{O}\} \) where \(Q\) has order 4. In particular, \(2Q = (0, 0)\), and by part (b), such a \(Q\) exists if and only if \(b = 4d^4\) for some \(d\). In this case \(\Phi \cong \mathbb{Z}/4\mathbb{Z} \) and this is line 1 of the table.

Finally, we have the case where \(|\Phi| = 2\). So in this case we must have \(\Phi = \{\mathcal{O}, (0, 0)\} \) and \(\Phi \cong \mathbb{Z}/2\mathbb{Z} \). This happens for all other choices of \(b\), and is line 3 of the table.