1. Find a primitive root modulo 343 = 7^3.

Solution: We start with a primitive root modulo 7, for example 3. The proof of existence of primitive roots modulo \(p^2 \) shows that if \(g \) is a primitive root mod \(p \), then there is exactly one value of \(t \) mod \(p \) such that \(g + tp \) is not a primitive root mod \(p^2 \). And for this value of \(t \), we will have \((g + tp)^{p-1} \equiv 1 \pmod{p^2}\). So we just compute \(3^6\) modulo 49, and see that we get \(43 \not\equiv 1 \pmod{49}\). Therefore, 3 is a primitive root modulo 49. Now the proof of existence of primitive roots modulo \(p^e \) showed that if we have a primitive root mod \(p^2 \), it’s also a primitive root mod \(p^e \). So 3 is a primitive root modulo 343 as well.

2. How many solutions are there to \(x^{12} \equiv 7 \pmod{19} \)? To \(x^{12} \equiv 6 \pmod{19} \)?

Solution: In general, if \(p \nmid a \), the number of solutions to \(x^k \equiv a \pmod{p} \) can be calculated as follows. Let \(d = \gcd(k, p-1) \). Then there are no solutions if \(a^{(p-1)/d} \not\equiv 1 \pmod{p} \), and there are \(d \) solutions if \(a^{(p-1)/d} \equiv 1 \pmod{p} \). To see this, let \(g \) be a primitive root mod \(p \). Write \(a = g^b \). Then any \(x \) solving the congruence equals \(g^m \) for some \(m \), and then the congruence says \(g^{mk} \equiv g^b \pmod{p} \), which is equivalent to \(mk \equiv b \pmod{p-1} \), since the order of \(g \) mod \(p \) is \(p-1 \). Now this is just a linear congruence, and it has exactly 0 or \(d = \gcd(k, p-1) \) solutions, according to whether \(d \nmid b \) or \(d | b \). This latter condition is equivalent to whether or not \(p-1 \) divides \((p-1)b/d \), which is equivalent to whether \(1 \equiv g^{(p-1)b/d} = a^{(p-1)/d} \pmod{p} \). For the given examples, compute \(7^{18/6} = 7^3 \equiv 1 \pmod{19} \), so the first congruence has 6 solutions. On the other hand, \(6^3 \equiv 7 \pmod{19} \), so the second congruence has no solutions.

3. Solve the congruence \(3x^2 + 4x - 2 \equiv 0 \pmod{31} \).

Solution: First, we make the congruence monic by inverting 3 mod 31. Noting that \(3 \cdot 10 = 30 \equiv -1 \pmod{31} \), we see that \(3^{-1} = -10\). So

\[
x^2 - 40x + 20 \equiv 0 \pmod{31}.
\]

Next, complete the square to see

\[
(x - 20)^2 \equiv 20^2 - 20 = 380 \equiv 8 \pmod{31}.
\]

We need to check whether 8 is a square mod 31 and also to compute a square root if it is. First, check

\[
\left(\frac{8}{31} \right) = \left(\frac{2}{31} \right) = 1.
\]

To compute a square root, one can use Tonelli’s algorithm. Here, it’s pretty easy since \(31 \equiv 3 \pmod{4} \). So a square root of 8 is

\[
8^{(31+1)/4} = 8^8 = 2^{24} \equiv 16 \pmod{31}.
\]

So \(x \equiv 20 \pm 16 \pmod{31} \). i.e \(x \equiv 4, 5 \pmod{31} \) are the two solutions.
4. Characterize all primes p such that 15 is a square modulo p.

Solution: Obviously 15 is a square mod 2, 3, 5. So suppose $p > 5$. We compute the Jacobi symbol

$$\left(\frac{15}{p} \right) = \left(\frac{3}{p} \right) \left(\frac{5}{p} \right) = (-1)^{\frac{p-1}{2}} \left(\frac{5}{3} \right) \left(\frac{3}{5} \right).$$

So the answer will depend on p modulo $4 \cdot 15 = 60$. Looking at the $\phi(60) = 2 \cdot 2 \cdot 4 = 16$ residue classes mod 60, we see that the RHS is $+1$ exactly when

$$p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \pmod{60}.$$

5. If n is odd, evaluate the Jacobi symbol $\left(\frac{n^3}{n-2} \right)$.

Solution: Using quadratic reciprocity for the Jacobi symbol (noting that one of n and $n-2$ must be 1 mod 4, we have

$$\left(\frac{n^3}{n-2} \right) = \left(\frac{n}{n-2} \right) = \left(\frac{n-2}{n} \right) = \left(-2 \right),$$

which is 1 when $n \equiv 1, 3 \pmod{8}$ and -1 when $n \equiv 5, 7 \pmod{8}$.

6. If $n = p_1^{e_1} \ldots p_r^{e_r}$, how many squares modulo n are there? How many quadratic residues modulo n are there (i.e. the squares which are coprime to n)?

Solution: For both these questions, we can use the Chinese Remainder theorem. Let’s solve the second question first. If p is an odd prime, then there are $(p-1)/2$ quadratic residues mod p. For each such quadratic residue a, Hensel’s lemma can be applied to $f(x) = x^2 - a$ to see that a (and anything congruent to a mod p^e) must be a square. Since there are p^{e-1} such lifts for every choice of $a \neq 0 \pmod{p}$, we see that the number of quadratic residues mod p^e is $p^{e-1}(p-1)/2 = p^e (1 - 1/p) / 2$. If $p = 2$, then we can use the fact that modulo 2, 4, 8 there is exactly one quadratic residue (namely 1), and if a is a square mod 8, then it is a square mod every higher power of 2 (this follows from an extended version of Hensel’s lemma). So the number of quadratic residues mod 2^e is 1 if $e \leq 3$ and 2^{e-3} if $e > 3$. Therefore, the number of quadratic residues mod $n = 2^e \prod p_i^{e_i}$ is, by CRT, equal to

$$\max(1, 2^{e-3}) \prod p_i^{e_i - 1}(p_i - 1)/2.$$

Now for the number of squares mod n. The number of squares will again be a product over all the primes dividing n, of the number of squares mod $p_i^{e_i}$. Separate out the squares according to what their gcd with p^e is; it must be an even power of p. We get the following: if e is even then

$$p^{e-1} \cdot \frac{p-1}{2} + p^{e-3} \cdot \frac{p-1}{2} + \cdots + p \cdot \frac{p-1}{2} + 1$$

(the last term corresponding to 0 being a square mod p^e). The sum equals

$$\frac{p^{e-1}(p-1)}{2} (1 + p^{-2} + \cdots + p^{-2(e-1)}) + 1 = \frac{p^{e-1}(p-1)}{2} \cdot \frac{(1 - p^{-e})}{1 - p^{-2}} + 1$$

$$= \frac{p(p^e - 1)}{2(p+1)} + 1 = \frac{p(p^e + 1) + 2}{2(p+1)}.$$

Similarly, if \(e \) is odd we get

\[
p^{e-1} \cdot \frac{p-1}{2} + p^{e-3} \cdot \frac{p-1}{2} + \cdots + \frac{p-1}{2} + 1 = \frac{p^{e+1} + 2p + 1}{2(p+1)}.
\]

I’ll leave the calculation for when \(p = 2 \) to you. The answer is

\[
\frac{2^{e-1} + 4}{3} \text{ if } e \text{ is even }, \quad \frac{2^{e-1} + 5}{3} \text{ if } e \text{ is odd}.
\]

7. Let \(p > 3 \) be a prime. Show that the number of solutions \((x, y)\) of the congruence \(x^2 + y^2 \equiv 3 \pmod{p}\) is \(p - \left(\frac{-1}{p} \right) \).

8. The number of solutions is

\[
\sum_{x=0}^{p-1} \left(\left(\frac{3 - x^2}{p} \right) + 1 \right) = p + \sum_{x=0}^{p-1} \left(\frac{3 - x^2}{p} \right) = p + \sum_{x=0}^{p-1} \left(\frac{-1}{p} \right) \left(\frac{x^2 - 3}{p} \right)
\]

\[
= p + \left(\frac{-1}{p} \right) \sum_{x=0}^{p-1} \left(\frac{x^2 - 3}{p} \right)
\]

We showed on homework that for any \(k \), \(\sum \left(\frac{x^2 + k}{p} \right) = -1 \). Therefore the expression above simplifies to \(p - \left(\frac{-1}{p} \right) \).

9. Compute (with justification) the cyclotomic polynomial \(\Phi_{12}(x) \).

Solution: We start with \(x^{12} - 1 \), factoring it and removing any factors that divide \(x^d - 1 \) for proper divisors \(d \) of 12. We have

\[
x^{12} - 1 = (x^6 - 1)(x^6 + 1)
\]

and so we can immediately throw out \(x^6 - 1 \). Next,

\[
x^6 + 1 = (x^2 + 1)(x^4 - x^2 + 1)
\]

and \(x^2 + 1 \) is a factor of \(x^4 - 1 \). So \(\Phi_{12}(x) \) must divide \(x^4 - x^2 + 1 \). Now since \(\phi(12) = 4 \), we see that equality must hold. So \(\Phi_{12}(x) = x^4 - x^2 + 1 \).

10. Let \(f(n) = (-1)^n \). Compute

\[
Z(f, 2) = \sum_{n \geq 1} \frac{f(n)}{n^2}.
\]

(you may use that \(\sum 1/n^2 = \pi^2/6 \).)

Solution: We want to know the value of

\[
S = -1 + \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{4^2} - \frac{1}{5^2} + \ldots
\]
We already know
\[
\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \ldots
\]

Adding these we get
\[
S + \frac{\pi^2}{6} = 2 \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots \right)
= 2 \cdot \frac{1}{4} \cdot \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \right)
= 2 \cdot \frac{1}{4} \cdot \frac{\pi^2}{6}.
\]

Therefore \(S = -\pi^2/12\).

11. For \(n = p_1^{e_1} \ldots p_r^{e_r}\), calculate the value of \((U * U * U)(n)\), where \(U\) is the arithmetic function such that \(U(n) = 1\) for all \(n\).

Solution: Since \(U\) is multiplicative, so is \(U * U * U\). So enough to calculate it for \(p^e\). Then we have
\[
(U * U * U)(p^e) = \sum_{d_1d_2d_3 = p^e} U(d_1)U(d_2)U(d_3) = \sum_{e_1 + e_2 + e_3 = e} 1
\]
since \(d_i\) can only be a power of \(p_i\), say \(p^{e_i}\). So the value of the function is just the number of nonnegative integer solutions of \(e_1 + e_2 + e_3 = e\). There are many ways to compute this number. One easy way is: if we fix any \(e_1\) between 0 and \(e\), the number of possible \(e_2\) is \(e - e_1 + 1\) (since \(e_2\) can range between 0 and \(e - e_1\)) and then \(e_3\) is forced to equal \(e - e_1 - e_2\). So the total number of solutions is
\[
\sum_{e_1=0}^{e} (e - e_1 + 1) = \sum_{e_1=0}^{e} (e + 1) - \sum_{e_1=0}^{e} e_1 = (e + 1)^2 - e(e + 1)/2 = (e + 1)(e + 2)/2.
\]

So for \(n = p_1^{e_1} \ldots p_r^{e_r}\), by multiplicativity, we have
\[
(U * U * U)(n) = \prod_{i=1}^{r} (e_i + 1)(e_i + 2)/2.
\]

12. Let \(p\) be a prime which is 1 mod 4, and suppose \(p = a^2 + b^2\) with \(a\) odd and positive. Show that \(\left(\frac{a}{p} \right) = 1\).

Solution: We have by Quadratic Reciprocity,
\[
\left(\frac{a}{p} \right) = \left(\frac{p}{a} \right) = \left(\frac{a^2 + b^2}{a} \right) = \left(\frac{b^2}{a} \right) = 1.
\]

13. Let \(a_1, a_2, a_3, a_4\) be integers. Show that the product \(p = \prod_{i<j} (a_i - a_j)\) is divisible by 12.

Solution: Enough to show it’s divisible by 3 and by 4. Since there are four integers, and only three residue classes mod 3, two of them must be congruent mod 3. Therefore divisibility by 3 follows. For divisibility by 4, note that the only way no two of them are congruent modulo 4 is if they are all the four distinct classes mod 4, namely 0, 1, 2, 3. But then 0 – 2 and 1 – 3 are both divisible by 2, which makes the product divisible by \(2^2 = 4\).
14. Let the sequence \(\{a_n\} \) be given by \(a_0 = 0, a_1 = 1 \) and for \(n \geq 2 \),
\[
a_n = 5a_{n-1} - 6a_{n-2}.
\]
Show that for every prime \(p > 3 \), we have \(p \mid a_{p-1} \).

Solution: The characteristic polynomial is \(T^2 - 5T + 6 = (T - 2)(T - 3) \). So we must have \(a_n = A \cdot 3^n + B \cdot 2^n \) for some \(A, B \). Plugging in \(n = 0, 1 \) we get \(A = 1, B = -1 \). So \(a_n = 3^n - 2^n \). Now by Fermat, if \(p > 3 \) then \(2^{p-1} \equiv 1 \equiv 3^{p-1} \) (mod \(p \)), so \(a_{p-1} \equiv 0 \) (mod \(p \)).

15. Find a positive integer such that \(\mu(n) + \mu(n+1) + \mu(n+2) = 3 \).

Solution: We know \(\mu(n) = \pm 1 \) if \(n \) is squarefree, and 0 otherwise. The only way we could have the equation holding is if \(\mu(n) = \mu(n+1) = \mu(n+2) = 1 \). That is, \(n, n+1, n+2 \) are all squarefree and products of an even number of primes. In particular, \(n \) must be 1 mod 4 (else 4 will divide one of these numbers). Trying the first few values, we see that \(n = 33 \) is the smallest value which works.

16. Compute the set of integers \(n \) for which \(\sum_{d \mid n} \mu(d)\phi(d) = 0 \).

Solution: Since \(\mu(n)\phi(n) \) is a multiplicative function of \(n \), so is
\[
f(n) = \sum_{d \mid n} \mu(d)\phi(d).
\]
Let’s compute what it is on prime powers. We have \(f(1) = 1 \), and for \(e \geq 1 \), \(f(p^e) = \phi(1) - \phi(p) = 2 - p \). Therefore, for \(n = p_1^{e_1} \cdots p_r^{e_r} \), we have \(f(n) = \prod (2 - p_i) \). Therefore \(f(n) = 0 \) iff one of the \(p_i \) is 2, i.e. iff \(n \) is even.

17. Let \(f \) be a multiplicative function which is not identically zero. Show that \(f(1) = 1 \).

Solution: We have \(f(1) = f(1^2) = f(1)f(1) \), so \(f(1)(f(1) - 1) = 0 \). If \(f(1) \neq 1 \), this forces \(f(1) = 0 \). Then \(f(n) = f(n \cdot 1) = f(n)f(1) = f(n) \cdot 0 = 0 \) for all \(n \), so \(f \) is identically 0. We used that 1 is coprime to all integers.