Chapter 14

Isotherman Parameters

Let \(x : U \to S \) be a regular surface. Let

\[
\phi_k(z) = \frac{\partial x_k}{\partial u_1} - i \frac{\partial x_k}{\partial u_2}, \quad z = u_1 + i u_2.
\]

(14.1)

Recall from last lecture that

(a) \(\phi \) is analytic in \(z \) \(\iff \) \(x_k \) is harmonic in \(u_1 \) and \(u_2 \).

(b) \(u_1 \) and \(u_2 \) are isothermal parameters \(\iff \)

\[
\sum_{k=1}^{n} \phi_k^2(z) = 0 \quad (14.2)
\]

c) If \(u_1, u_2 \) are isothermal parameters, then \(S \) is regular \(\iff \)

\[
\sum_{k=1}^{n} |\phi_k(z)|^2 \neq 0 \quad (14.3)
\]

We start by stating a lemma that summarizes what we did in the last lecture:

Lemma 4.3 in Osserman: Let \(x(u) \) define a minimal surface, with \(u_1, u_2 \) isothermal parameters. Then the functions \(\phi_k(z) \) are analytic and they satisfy the eqns in b) and c). Conversely if \(\phi_1, \phi_2, ..., \phi_n \) are analytic functions satisfying the eqns in b) and c) in a simply connected domain \(D \)
then there exists a regular minimal surface defined over domain D, such that the eqn on the top of the page is valid.

Now we take a surface in non-parametric form:

$$x_k = f_k(x_1, x_2), k = 3, ..., n$$ (14.4)

and we have the notation from the last time:

$$f = (f_3, f_4, ..., f_n), p = \frac{\partial f}{\partial x_1}, q = \frac{\partial f}{\partial x_2}, r = \frac{\partial^2 f}{\partial x_1^2}, s = \frac{\partial^2 f}{\partial x_1 \partial x_2}, t = \frac{\partial^2 f}{\partial x_2^2}$$ (14.5)

Then the minimal surface eqn may be written as:

$$(1 + |q|^2)\frac{\partial p}{\partial x_1} - (p.q)(\frac{\partial p}{\partial x_2} + \frac{\partial q}{\partial x_1}) + (1 + |p|^2)\frac{\partial q}{\partial x_2} = 0$$ (14.6)

equivalently

$$(1 + |q|^2)r - 2(p.q)s + (1 + |p|^2)t = 0$$ (14.7)

One also has the following:

$$detg_{ij} = 1 + |p|^2 + |q|^2 + |p|^2|q|^2 - (p.q)^2$$ (14.8)

Define

$$W = \sqrt{detg_{ij}}$$ (14.9)

Below we’ll do exactly the same things with what we did when we showed that the mean curvature equals 0 if the surface is minimizer for some curve. Now we make a variation in our surface just like the one that we did before (the only difference is that x_1 and x_2 are not varied.)

$$\tilde{f}_k = f_k + \lambda h_k, k = 3, ..., n,$$ (14.10)

where λ is a real number, and $h_k \in C^1$ in the domain of definition D of the
We have
\[\tilde{f} = f + \lambda h, \tilde{p} = p + \lambda \frac{\partial h}{\partial x_1}, \tilde{q} = q + \lambda \frac{\partial h}{\partial x_2} \] (14.11)

One has
\[\tilde{W}^2 = W^2 + 2\lambda X + \lambda^2 Y \] (14.12)

where
\[X = [(1 + |q|^2)p - (p.q)q] \frac{\partial h}{\partial x_1} + [(1 + |p|^2)q - (p.q)p] \frac{\partial h}{\partial x_2} \] (14.13)

and \(Y \) is a continuous function in \(x_1 \) and \(x_2 \). It follows that
\[\tilde{W} = W + \lambda \frac{X}{W} + O(\lambda^2) \] (14.14)

as \(|\lambda| \to 0 \). Now we consider a closed curve \(\Gamma \) on our surface. Let \(\Delta \) be the region bounded by \(\Gamma \). If our surface is a minimizer for \(\Delta \) then for every choice of \(h \) such that \(h = 0 \) on \(\Gamma \) we have
\[\int \int_{\Delta} \tilde{W} dx_1 dx_2 \geq \int \int_{\Delta} W dx_1 dx_2 \] (14.15)

which implies
\[\int \int_{\Delta} \frac{X}{W} = 0 \] (14.16)

Substituting for \(X \), integrating by parts, and using the fact that \(h = 0 \) on \(\Gamma \), we find
\[\int \int_{\Delta} \left[\frac{\partial}{\partial x_1} \left[\frac{1 + |q|^2}{W} p - \frac{p.q}{W} q \right] + \frac{\partial}{\partial x_2} \left[\frac{1 + |p|^2}{W} q - \frac{p.q}{W} p \right] \right] h dx_1 dx_2 = 0 \] (14.17)

must hold everywhere. By the same reasoning that we used when we found the condition for a minimal surface the above integrand should be zero.
\[\frac{\partial}{\partial x_1} \left[\frac{1 + |q|^2}{W} p - \frac{p.q}{W} q \right] + \frac{\partial}{\partial x_2} \left[\frac{1 + |p|^2}{W} q - \frac{p.q}{W} p \right] = 0 \] (14.18)
Once we found this equation it makes sense to look for ways to derive it from the original equation since after all there should only be one constraint for a minimal surface. In fact the LHS of the above eqn can be written as the sum of three terms:

\[
\left[1 + |q|^2 \frac{\partial p}{W} \frac{\partial x_1}{\partial x_1} - \frac{p \cdot q}{W} \frac{\partial q}{\partial x_1} + \frac{\partial p}{\partial x_2} + \frac{1 + |p|^2}{W} \frac{\partial q}{\partial x_2} \right] + \left[\frac{\partial}{\partial x_1} \left(\frac{1 + |q|^2}{W} \right) - \frac{\partial}{\partial x_2} \left(\frac{p \cdot q}{W} \right) \right] p \tag{14.19} \\
+ \left[\frac{\partial}{\partial x_2} \left(\frac{1 + |p|^2}{W} \right) - \frac{\partial}{\partial x_1} \left(\frac{p \cdot q}{W} \right) \right] q \tag{14.20}
\]

The first term is the minimal surface eqn given on the top of the second page. If we expand out the coefficient of \(p \) in the second term we find the expression:

\[
\frac{1}{W^3} \left[(p \cdot q) q - (1 + |q|^2)p \right] \cdot [(1 + |q|^2)r - 2(p \cdot q)s + (1 + |p|^2)t] \tag{14.22}
\]

which vanishes by the second version of the minimal surface eqns. Similarly the coefficient of \(q \) in third term vanishes so the while expression equals zero. In the process we’ve also shown that

\[
\frac{\partial}{\partial x_1} \left(\frac{1 + |q|^2}{W} \right) = \frac{\partial}{\partial x_2} \left(\frac{p \cdot q}{W} \right) \tag{14.23}
\\
\frac{\partial}{\partial x_2} \left(\frac{1 + |p|^2}{W} \right) = \frac{\partial}{\partial x_1} \left(\frac{p \cdot q}{W} \right) \tag{14.24}
\]

Existence of isothermal parameters or Lemma 4.4 in Osserman

Let \(S \) be a minimal surface. Every regular point of \(S \) has a neighborhood in which there exists a reparametrization of \(S \) in terms of isothermal parameters.

Proof: Since the surface is regular for any point there exists a neighborhood of that point in which \(S \) may be represented in non-parametric form. In particular we can find a disk around that point where the surface can be
represented in non parametric form. Now the above eqns imply the existence of functions $F(x_1, x_2)$, $G(x_1, x_2)$ defined on this disk, satisfying

$$\frac{\partial F}{\partial x_1} = \frac{1 + |p|^2}{W}, \frac{\partial F}{\partial x_2} = \frac{p \cdot q}{W};$$ \hfill (14.25)

$$\frac{\partial G}{\partial x_1} = \frac{p \cdot q}{W}, \frac{\partial G}{\partial x_2} = \frac{1 + |q|^2}{W}.$$ \hfill (14.26)

If we set

$$\xi_1 = x_1 + F(x_1, x_2), \xi_2 = x_2 + G(x_1, x_2),$$ \hfill (14.27)

we find

$$J = \frac{\partial(x_1, x_2)}{\partial(x_1, x_2)} = 2 + \frac{2 + |p|^2 + |q|^2}{W} \geq 0$$ \hfill (14.28)

Thus the transformation $(x_1, x_2) \rightarrow (\xi_1, \xi_2)$ has a local inverse $(\xi_1, \xi_2) \rightarrow (x_1, x_2)$. We find the derivative of x at point (ξ_1, ξ_2):

$$Dx = J^{-1}[x_1, x_2, f_3, ..., f_n]$$ \hfill (14.29)

It follows that with respect to the parameters ξ_1, ξ_2 we have

$$g_{11} = g_{22} = \left| \frac{\partial x}{\partial \xi_1} \right|^2 = \left| \frac{\partial x}{\partial \xi_2} \right|^2$$ \hfill (14.30)

$$g_{12} = \frac{\partial x}{\partial \xi_1} \cdot \frac{\partial x}{\partial \xi_2} = 0$$ \hfill (14.31)

so that ξ_1, ξ_2 are isothermal coordinates.