Chapter 5

First Fundamental Form

5.1 Tangent Planes

One important tool for studying surfaces is the tangent plane. Given a given regular parametrized surface S embedded in \mathbb{R}^n and a point $p \in S$, a tangent vector to S at p is a vector in \mathbb{R}^n that is the tangent vector $\alpha'(0)$ of a differential parametrized curve $\alpha: (-\epsilon, \epsilon) \rightarrow S$ with $\alpha(0) = p$. Then the tangent plane $T_p(S)$ to S at p is the set of all tangent vectors to S at p. This is a set of \mathbb{R}^3-vectors that end up being a plane.

An equivalent way of thinking of the tangent plane is that it is the image of \mathbb{R}^2 under the linear transformation $Dx(q)$, where x is the map from a domain $D \rightarrow S$ that defines the surface, and q is the point of the domain that is mapped onto p. Why is this equivalent? We can show that x is invertible.

So given any tangent vector $\alpha'(0)$, we can look at $\gamma = x^{-1} \circ \alpha$, which is a curve in D. Then $\alpha'(0) = (x \circ \gamma)'(0) = (Dx(\gamma(0)) \circ \gamma')(0) = Dx(q)(\gamma'(0))$. Now, γ can be chosen so that $\gamma'(0)$ is any vector in \mathbb{R}^2. So the tangent plane is the image of \mathbb{R}^2 under the linear transformation $Dx(q)$.

Certainly, though, the image of \mathbb{R}^2 under an invertible linear transformation (it’s invertible since the surface is regular) is going to be a plane including the origin, which is what we’d want a tangent plane to be. (When
I say that the tangent plane includes the origin, I mean that the plane itself consists of all the vectors of a plane through the origin, even though usually you’d draw it with all the vectors emanating from \(p \) instead of the origin.)

This way of thinking about the tangent plane is like considering it as a “linearization” of the surface, in the same way that a tangent line to a function from \(\mathbb{R} \to \mathbb{R} \) is a linear function that is locally similar to the function. Then we can understand why \(D_x(q)(\mathbb{R}^2) \) makes sense: in the same way we can “replace” a function with its tangent line which is the image of \(\mathbb{R} \) under the map \(t \mapsto f'(p)t + C \), we can replace our surface with the image of \(\mathbb{R}^2 \) under the map \(D_x(q) \).

The interesting part of seeing the tangent plane this way is that you can then consider it as having a basis consisting of the images of \((1,0) \) and \((0,1) \) under the map \(D_x(q) \). These images are actually just (if the domain in \(\mathbb{R}^2 \) uses \(u_1 \) and \(u_2 \) as variables) \(\frac{\partial x}{\partial u_1} \) and \(\frac{\partial x}{\partial u_2} \) (which are \(n \)-vectors).

5.2 The First Fundamental Form

Nizam mentioned the First Fundamental Form. Basically, the FFF is a way of finding the length of a tangent vector (in a tangent plane). If \(w \) is a tangent vector, then \(|w|^2 = w \cdot w \). Why is this interesting? Well, it becomes more interesting if you’re considering \(w \) not just as its \(\mathbb{R}^3 \) coordinates, but as a linear combination of the two basis vectors \(\frac{\partial x}{\partial u_1} \) and \(\frac{\partial x}{\partial u_2} \). Say \(w = a \frac{\partial x}{\partial u_1} + b \frac{\partial x}{\partial u_2} \); then

\[
|w|^2 = \left(a \frac{\partial x}{\partial u_1} + b \frac{\partial x}{\partial u_2} \right) \cdot \left(a \frac{\partial x}{\partial u_1} + b \frac{\partial x}{\partial u_2} \right) = a^2 \frac{\partial x}{\partial u_1} \cdot \frac{\partial x}{\partial u_1} + 2ab \frac{\partial x}{\partial u_1} \cdot \frac{\partial x}{\partial u_2} + b^2 \frac{\partial x}{\partial u_2} \cdot \frac{\partial x}{\partial u_2}. \tag{5.1}
\]

Let’s deal with notational differences between do Carmo and Osserman. do Carmo writes this as \(Ea^2 + 2Fab + Gb^2 \), and refers to the whole thing as \(I_p : T_p(S) \to \mathbb{R} \).\(^1\) Osserman lets \(g_{11} = E \), \(g_{12} = g_{21} = F \) (though he never

\(^1\)Well, actually he’s using \(u' \) and \(v' \) instead of \(a \) and \(b \) at this point, which is because these coordinates come from a tangent vector, which is to say they are the \(u'(q) \) and \(v'(q) \)
makes it too clear that these two are equal), and $g_{22} = G$, and then lets the matrix that these make up be G, which he also uses to refer to the whole form. I am using Osserman’s notation.

Now we’ll calculate the FFF on the cylinder over the unit circle; the parametrized surface here is $x: (0, 2\pi) \times \mathbb{R} \to S \subset \mathbb{R}^3$ defined by $x(u, v) = (\cos u, \sin u, v)$. (Yes, this misses a vertical line of the cylinder; we’ll fix this once we get away from parametrized surfaces.) First we find that $rac{\partial x}{\partial u} = (-\sin u, \cos u, 0)$ and $rac{\partial x}{\partial v} = (0, 0, 1)$. Thus $g_{11} = \frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial u} = \sin^2 u + \cos^2 u = 1$, $g_{21} = g_{12} = 0$, and $g_{22} = 1$. So then $|w|^2 = a^2 + b^2$, which basically means that the length of a vector in the tangent plane to the cylinder is the same as it is in the $(0, 2\pi) \times \mathbb{R}$ that it’s coming from.

As an exercise, calculate the first fundamental form for the sphere S^2 parametrized by $x: (0, \pi) \times (0, 2\pi) \to S^2$ with

$$x(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta). \quad (5.2)$$

We first calculate that $\frac{\partial x}{\partial \theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta)$ and $\frac{\partial x}{\partial \varphi} = (-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0)$. So we find eventually that $|w|^2 = a^2 + b^2 \sin^2 \theta$. This makes sense — movement in the φ direction (latitudinally) should be “worth more” closer to the equator, which is where $\sin^2 \theta$ is maximal.

5.3 Area

If we recall the exterior product from last time, we can see that $|\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}|$ is the area of the parallelogram determined by $\frac{\partial x}{\partial u}$ and $\frac{\partial x}{\partial v}$. This is analogous to the fact that in 18.02 the magnitude of the cross product of two vectors is the area of the parallelogram they determine. Then $\int_Q |\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v}| \, du \, dv$ is the area of the bounded region Q in the surface. But Nizam showed yesterday
that Lagrange’s Identity implies that
\[
\left| \frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v} \right|^2 = \left| \frac{\partial x}{\partial u} \right|^2 \left| \frac{\partial x}{\partial v} \right|^2 - \left(\frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial v} \right)^2
\] (5.3)

Thus \(\frac{\partial x}{\partial u} \wedge \frac{\partial x}{\partial v} = \sqrt{g_{11}g_{22} - g_{12}^2} \). Thus, the area of a bounded region \(Q \) in the surface is \(\int_Q \sqrt{g_{11}g_{22} - g_{12}^2} \, du \, dv \).

For example, let us compute the surface area of a torus; let’s let the radius of a meridian be \(r \) and the longitudinal radius be \(a \). Then the torus (minus some tiny strip) is the image of \(x: (0, 2\pi) \times (0, 2\pi) \to S^1 \times S^1 \) where \(x(u, v) = ((a + r \cos u) \cos v, (a + r \cos u) \sin v), r \sin u \). Then \(\frac{\partial x}{\partial u} = (-r \sin u \cos v, -r \sin u \sin v, r \cos u) \), and \(\frac{\partial x}{\partial v} = (- (a + r \cos u) \sin v, (a + r \cos u) \cos v, 0) \). So \(g_{11} = r^2, g_{12} = 0, \) and \(g_{22} = (r \cos u + a)^2 \). Then \(\sqrt{g_{11}g_{22} - g_{12}^2} = r(r \cos u + a) \). Integrating this over the whole square, we get

\[
A = \int_0^{2\pi} \int_0^{2\pi} (r^2 \cos u + ra) \, du \, dv
\]
\[
= \left(\int_0^{2\pi} (r^2 \cos u + ra) \, du \right) \left(\int_0^{2\pi} \, dv \right)
\]
\[
= (r^2 \sin 2\pi + ra 2\pi)(2\pi) = 4\pi^2 ra
\]

And this is the surface area of a torus!

(This lecture was given Wednesday, September 29, 2004.)