Chapter 1

Introduction

The title page of this book contains a graphic that we reproduce here.

![Diagram](image)

It is intended to evoke thoughts of the scientific method.

A hypothesis analyzed by a person produces a prediction, which motivates the specification of an experiment, which when executed results in an observation, which analyzed by a person yields a hypothesis.

This sounds valid, and a good graphic can be exceptionally useful for leading a reader through the story that the author wishes to tell.

Interestingly, a graphic has the power to evoke feelings of understanding, without really meaning much. The same is true for text: it is possible to use a language such as English to express ideas that are never made rigorous or clear. When someone says “I believe in free will,” what does she believe in? We may all have some concept of what she’s saying—something we can conceptually work with and discuss or argue about. But to what extent are we all discussing the same thing, the thing she intended to convey?

Science is about agreement. When we supply a convincing argument, the result of this convincing is agreement. When, in an experiment, the observation matches the hypothesis—success!—that is agreement. When my methods make sense to you, that is
agreement. When practice does not agree with theory, that is disagreement. Agreement is the good stuff in science; it’s the high fives.

But it is easy to think we’re in agreement, when really we’re not. Modeling our thoughts on heuristics and pictures may be convenient for quick travel down the road, but we’re liable to miss our turnoff at the first mile. The danger is in mistaking our convenient conceptualizations for what’s actually there. It is imperative that we have the ability at any time to ground out in reality. What does that mean?

Data. Hard evidence. The physical world. It is here that science touches down and heuristics evaporate. So let’s look again at the diagram on the cover. It is intended to evoke an idea of how science is performed. Is there hard evidence and data to back this theory up? Can we set up an experiment to find out whether science is actually performed according to such a protocol? To do so we have to shake off the stupor evoked by the diagram and ask the question: “what does this diagram intend to communicate?”

In this course I will use a mathematical tool called ologs, or ontology logs, to give some structure to the kinds of ideas that are often communicated in pictures like the one on the cover. Each olog inherently offers a framework in which to record data about the subject. More precisely it encompasses a database schema, which means a system of interconnected tables that are initially empty but into which data can be entered. For example consider the olog below

This olog represents a framework in which to record data about objects held above the ground, their mass, their height, and a comparison (the ?-mark in the middle) between the number of seconds till they hit the ground and a certain real-valued function of their height. We will discuss ologs in detail throughout this course.

The picture in (1.1) looks like an olog, but it does not conform to the rules that we lay out for ologs in Section 2.3. In an olog, every arrow is intended to represent a mathematical function. It is difficult to imagine a function that takes in predictions and outputs experiments, but such a function is necessary in order for the arrow

\[
\text{a prediction} \quad \text{motivates the specification of} \quad \text{an experiment}
\]

in (1.1) to make sense. To produce an experiment design from a prediction probably requires an expert, and even then the expert may be motivated to specify a different experiment on Tuesday than he is on Monday. But perhaps our criticism has led to a way forward: if we say that every arrow represents a function \emph{when in the context of a specific expert who is actually doing the science at a specific time}, then Figure (1.1) begins to make sense. In fact, we will return to the figure in Section 5.3 (specifically Example 5.3.3.10), where background methodological context is discussed in earnest.
This course is an attempt to extol the virtues of a new branch of mathematics, called category theory, which was invented for powerful communication of ideas between different fields and subfields within mathematics. By powerful communication of ideas I actually mean something precise. Different branches of mathematics can be formalized into categories. These categories can then be connected together by functors. And the sense in which these functors provide powerful communication of ideas is that facts and theorems proven in one category can be transferred through a connecting functor to yield proofs of analogous theorems in another category. A functor is like a conductor of mathematical truth.

I believe that the language and toolset of category theory can be useful throughout science. We build scientific understanding by developing models, and category theory is the study of basic conceptual building blocks and how they cleanly fit together to make such models. Certain structures and conceptual frameworks show up again and again in our understanding of reality. No one would dispute that vector spaces are ubiquitous. But so are hierarchies, symmetries, actions of agents on objects, data models, global behavior emerging as the aggregate of local behavior, self-similarity, and the effect of methodological context.

Some ideas are so common that our use of them goes virtually undetected, such as set-theoretic intersections. For example, when we speak of a material that is both lightweight and ductile, we are intersecting two sets. But what is the use of even mentioning this set-theoretic fact? The answer is that when we formalize our ideas, our understanding is almost always clarified. Our ability to communicate with others is enhanced, and the possibility for developing new insights expands. And if we are ever to get to the point that we can input our ideas into computers, we will need to be able to formalize these ideas first.

It is my hope that this course will offer scientists a new vocabulary in which to think and communicate, and a new pipeline to the vast array of theorems that exist and are considered immensely powerful within mathematics. These theorems have not made their way out into the world of science, but they are directly applicable there. Hierarchies are partial orders, symmetries are group elements, data models are categories, agent actions are monoid actions, local-to-global principles are sheaves, self-similarity is modeled by operads, context can be modeled by monads.

1.1 A brief history of category theory

The paradigm shift brought on by Einstein’s theory of relativity brought on the realization that there is no single perspective from which to view the world. There is no background framework that we need to find; there are infinitely many different frameworks and perspectives, and the real power lies in being able to translate between them. It is in this historical context that category theory got its start.\footnote{The following history of category theory is far too brief, and perhaps reflects more of the author’s aesthetic than any kind of objective truth, whatever that may mean. Here are some much better references: [Kro], [Mar1], [LM].}

Category theory was invented in the early 1940s by Samuel Eilenberg and Saunders Mac Lane. It was specifically designed to bridge what may appear to be two quite different fields: topology and algebra. Topology is the study of abstract shapes such as 7-dimensional spheres; algebra is the study of abstract equations such as \(y^2z = x^3 - xz^2 \). People had already created important and useful links (e.g. cohomology theory) between these fields, but Eilenberg and Mac Lane needed to precisely compare different links with
one another. To do so they first needed to boil down and extract the fundamental nature of these two fields. But the ideas they worked out amounted to a framework that fit not only topology and algebra, but many other mathematical disciplines as well.

At first category theory was little more than a deeply clarifying language for existing difficult mathematical ideas. However, in 1957 Alexander Grothendieck used category theory to build new mathematical machinery (new cohomology theories) that granted unprecedented insight into the behavior of algebraic equations. Since that time, categories have been built specifically to zoom in on particular features of mathematical subjects and study them with a level of acuity that is simply unavailable elsewhere.

Bill Lawvere saw category theory as a new foundation for all mathematical thought. Mathematicians had been searching for foundations in the 19th century and were reasonably satisfied with set theory as the foundation. But Lawvere showed that the category of sets is simply a category with certain nice properties, not necessarily the center of the mathematical universe. He explained how whole algebraic theories can be viewed as examples of a single system. He and others went on to show that higher order logic was beautifully captured in the setting of category theory (more specifically toposes). It is here also that Grothendieck and his school worked out major results in algebraic geometry.

In 1980 Joachim Lambek showed that the types and programs used in computer science form a specific kind of category. This provided a new semantics for talking about programs, allowing people to investigate how programs combine and compose to create other programs, without caring about the specifics of implementation. Eugenio Moggi brought the category theoretic notion of monads into computer science to encapsulate ideas that up to that point were considered outside the realm of such theory.

It is difficult to explain the clarity and beauty brought to category theory by people like Daniel Kan and André Joyal. They have each repeatedly extracted the essence of a whole mathematical subject to reveal and formalize a stunningly simple yet extremely powerful pattern of thinking, revolutionizing how mathematics is done.

All this time, however, category theory was consistently seen by much of the mathematical community as ridiculously abstract. But in the 21st century it has finally come to find healthy respect within the larger community of pure mathematics. It is the language of choice for graduate-level algebra and topology courses, and in my opinion will continue to establish itself as the basic framework in which mathematics is done.

As mentioned above category theory has branched out into certain areas of science as well. Baez and Dolan have shown its value in making sense of quantum physics, it is well established in computer science, and it has found proponents in several other fields as well. But to my mind, we are the very beginning of its venture into scientific methodology. Category theory was invented as a bridge and it will continue to serve in that role.

1.2 Intention of this book

The world of applied mathematics is much smaller than the world of applicable mathematics. As alluded to above, this course is intended to create a bridge between the vast array of mathematical concepts that are used daily by mathematicians to describe all manner of phenomena that arise in our studies, and the models and frameworks of scientific disciplines such as physics, computation, and neuroscience.

To the pure mathematician I’ll try to prove that concepts such as categories, functors, natural transformations, limits, colimits, functor categories, sheaves, monads, and
1.2. INTENTION OF THIS BOOK

operads—concepts that are often considered too abstract for even math majors—can be communicated to scientists with no math background beyond linear algebra. If this material is as teachable as I think, it means that category theory is not esoteric but somehow well-aligned with ideas that already make sense to the scientific mind. Note, however, that this book is example-based rather than proof-based, so it may not be suitable as a reference for students of pure mathematics.

To the scientist I’ll try to prove the claim that category theory includes a formal treatment of conceptual structures that the scientist sees often, perhaps without realizing that there is well-oiled mathematical machinery to be employed. We will work on the structure of information; how data is made meaningful by its connections, both internal and outreaching, to other data. Note, however, that this book should most certainly not be taken as a reference on scientific matters themselves. One should assume that any account of physics, materials science, chemistry, etc. has been oversimplified. The intention is to give a flavor of how category theory may help us model scientific ideas, not to explain these ideas in a serious way.

Data gathering is ubiquitous in science. Giant databases are currently being mined for unknown patterns, but in fact there are many (many) known patterns that simply have not been catalogued. Consider the well-known case of medical records. A patient’s medical history is often known by various individual doctor-offices but quite inadequately shared between them. Sharing medical records often means faxing a hand-written note or a filled-in house-created form between offices.

Similarly, in science there exists substantial expertise making brilliant connections between concepts, but it is being conveyed in silos of English prose known as journal articles. Every scientific journal article has a methods section, but it is almost impossible to read a methods section and subsequently repeat the experiment—the English language is inadequate to precisely and concisely convey what is being done.

The first thing to understand in this course is that reusable methodologies can be formalized, and that doing so is inherently valuable. Consider the following analogy. Suppose you want to add up the area of a region in space (or the area under a curve). You break the region down into small squares, each of which you know has area A; then you count the number of squares, say n, and the result is that the region has an area of about nA. If you want a more precise and accurate result you repeat the process with half-size squares. This methodology can be used for any area-finding problem (of which there are more than a first-year calculus student generally realizes) and thus it deserves to be formalized. But once we have formalized this methodology, it can be taken to its limit and out comes integration by Riemann sums.

I intend to show that category theory is incredibly efficient as a language for experimental design patterns, introducing formality while remaining flexible. It forms a rich and tightly woven conceptual fabric that will allow the scientist to maneuver between different perspectives whenever the need arises. Once one builds that fabric for oneself, he or she has an ability to think about models in a way that simply would not occur without it. Moreover, putting ideas into the language of category theory forces a person to clarify their assumptions. This is highly valuable both for the researcher and for his or her audience.

What must be recognized in order to find value in this course is that conceptual chaos is a major problem. Creativity demands clarity of thinking, and to think clearly about a subject requires an organized understanding of how its pieces fit together. Organization and clarity also lead to better communication with others. Academics often say they are paid to think and understand, but that is not true. They are paid to think, understand,
and communicate their findings. Universal languages for science—languages such as calculus and differential equations, matrices, or simply graphs and pie-charts—already exist, and they grant us a cohesiveness that makes scientific research worthwhile. In this book I will attempt to show that category theory can be similarly useful in describing complex scientific understandings.

1.3 What is requested from the student

I will do my best to make clear the value of category theory in science, but I am not a scientist. To that end I am asking for your help in exploring how category theory may be useful in your specific field.

I also want you to recognize that the value of mathematics is not generally obvious at first. A good student learning a good subject with a good teacher will see something compelling almost immediately, but may not see how it will be useful in real life. This will come later. I hope you will work hard to understand even without yet knowing what its actual value in your life and research will be. Like a student of soccer is encouraged to spend hours juggling the ball when he or she could be practicing penalty shots, it is important to gain facility with the materials you will be using. Doing exercises is imperative for learning mathematics.

1.4 Category theory references

I wrote this book because the available books on category theory are almost all written for mathematicians (the rest are written for computer scientists). There is one book by Lawvere and Schanuel, called Conceptual Mathematics [LS], that offers category theory to a wider audience, but its style is not appropriate for this course. Still, it is very well written and clear.

The “bible” of category theory is Categories for the working mathematician by Mac Lane [Mac]. But as the title suggests, it was written for working mathematicians and will be quite opaque to my target audience. However, once a person has read my book, Mac Lane’s book may become a valuable reference.

Other good books include Steve Awodey’s book Category theory [Awo] and Barr and Wells book Category theory for computing science, [BW]. A paper by Brown and Porter called Category Theory: an abstract setting for analogy and comparison [BP1] is more in line with the style of this book, only much shorter. Online, I find wikipedia and a site called the nlab to be quite useful.

This book attempts to explain category theory by examples and exercises rather than by theorems and proofs. I hope this approach will be valuable to the working scientist.

1.5 Acknowledgments

I would like to express my deep appreciation for the many scientists who I have worked with over the past five years. It all started with Paea LePendu who first taught me about databases when I was naively knocking on doors in the University of Oregon computer science department. This book would never have been written if Tristan Nguyen and Dave Balaban had not noticed my work and encouraged me to continue. Dave Balaban and Peter Gates have been my scientific partners since the beginning, working hard to
understand what I’m offering and working just as hard to help me understand all that I’m missing. Peter Gates has deepened my understanding of data in profound ways.

I have also been tremendously lucky to know Haynes Miller, who made it possible for me set down at MIT, with the help of Clark Barwick and Jacob Lurie. I knew that MIT would be the best place in the world for me to pursue this type of research, and it has really come through. Researchers like Markus Buehler and his graduate students Tristan Giesa and Dieter Brommer have been a pleasure to work with, and the many materials science examples scattered throughout this book is a testament to how much our work together has influenced my thinking.

I’d also like to thank my collaborators and conversation partners with whom I have discussed subjects written about in this book. Other than people mentioned above, these include Steve Awodey, Allen Brown, Adam Chlipala, Carlo Curino, Dan Dugger, Henrik Forssell, David Gepner, Jason Gross, Bob Harper, Ralph Hutchison, Robert Kent, Jack Morava, Scott Morrison, David Platt, Joey Perricone, Dylan Rupel, Guarav Singh, Sam Shames, Nat Stapleton, Patrick Schultz, Ka Yu Tam, Ryan Wisnesky, Jesse Wolfson, and Elizabeth Wood.

I would like to thank Peter Kleinhenz and Peter Gates for reading this book and providing invaluable feedback before I began teaching the 18-S996 class at MIT in Spring 2013. In particular the cover image is a mild alteration of something Gates sent me to help motivate the book to scientists. I would also like to greatly thank the 18-S996 course grader Darij Grinberg, who was not only the best grader I’ve had in my 14 years of teaching, but gave me more comments than anyone else on the book itself. I’d also like to thank the students from the 18-S996 class at MIT who helped me find typos, pointed me to unclear explanations, and generally helped me improve the book in many ways. Other than the people listed above, these include Aaron Brookner, Leon Dimas, Dylan Erb, Deokhwan Kim, Taesoo Kim, Owen Lewis, Yair Shenfeld, and Adam Strandberg.

I would like to thank my teacher, Peter Ralston, who taught me to repeatedly question the obvious. My ability to commit to a project like this one and to see it to fruition has certainly been enhanced since studying with him.

Finally, I acknowledge my appreciation for support from the Office of Naval Research without which this book would not have been remotely possible. I believe that their funding of basic research is an excellent way of ensuring that the US remains a global leader in the years to come.

\(^2\)Grant numbers: N000140910466, N000141010841, N000141310260