FUNdaMENTALs of Design

I have no special talents. I am only **passionately curious**. -Einstein

- “Design is a **Passionate process**” -Prof. Slocum
- Never stop asking questions, seeking a better, simpler solution!
- (Play, SKETCH, Model, Detail, Build, Test)\(^N\)
- Design is an iterative process.
Passion FOCUS!
Keep Your Eye on the Prize

“You can’t always get what you want
But if you try sometimes well you might find
You get what you need”

Mick Jagger & Keith Richards 1969
http://lyrics.all-lyrics.net/r/rollingstones/letitbleed.txt

Get a clear notion of what you desire to accomplish, then you will probably get it

Keep a sharp look-out upon your materials: Get rid of every pound of material you can do without. Put yourself to the question, ‘What business has it there?’

Avoid complexities and make everything as simple as possible

Remember the get-ability of parts

Henry Maudslay’s Maxims (1700’s, a father of modern machine tools)
Deterministic Design

- Everything has a cost, and everything performs (to at least some degree)
 - If you spend all your time on a single tree, you will have no time for the forest
 - If you do not pay attention to the trees, soon you will have no forest!
 - You have to pay attention to the overall system and to the details
- Successful projects keep a close watch on budgets (time, money, performance)
 - Do not spend a lot of effort (money) to get a small increase in performance
 - “Bleeding edge” designs can drain you!
 - Do not be shy about taking all the performance you can get for the same cost!
- Stay nimble (modular!) and be ready to switch technology streams
 - It is at the intersection of the streams that things often get exciting!
 - “If you board the wrong train, there’s no use running along the corridor in the opposite direction” Dietrich Bonhoeffer

Image removed due to copyright restrictions.

Courtesy of Alex Slocum. Used with permission.
Deterministic Design: **Funnels:** **Strategies**

- Deterministic Design leaves LOTS of room for the wild free creative spirit, and LOTS of room for experimentation and play.
- Deterministic Design is a catalyst to funnel creativity into a *successful* design.

Strategy: Plan or tactics to score but there may be many different types of machines that could be used.

Concept: An idea for a specific machine that can execute a strategy.

Module: A sub assembly of a machine that by itself executes a certain function.

Component: An individual part.

- It is OK to iterate…
 - A *goal* is to never have to backtrack.
 - A good engineer, however, knows when its time to let go…

© 2000 Alexander Slocum
Deterministic Design: *Schedules*

- Time is relative, but you will soon run out of it if you keep missing deadlines!
 - No matter how good your ideas are, their value decays exponentially with every day they are late
 - Once a customer starts buying a product, if the manufacturer maintains diligence, you will find it extremely difficult to regain market share

- The process of getting a product to market involves phases
 - Identify & study problem, develop solution strategies and evolve “best one”
 - Create concepts and evolve “best one”
 - Create modules
 - Detail design, build, & test the modules starting with the most risky
 - Assemble, integrate, test, and modify as needed
 - Document and ship

- You must create a schedule and stick to it!
 - This is true in ALL pursuits
 - Yes, sometimes the schedule will slip...this is why you have countermeasures for risky items that fail, and you build in capacitances (float time) to allow for troubles...
Systematic Organization of Ideas: FRDPARRC

<table>
<thead>
<tr>
<th>Functional Requirements (Events) Words</th>
<th>Design Parameters (Idea) Words & Drawings</th>
<th>Analysis</th>
<th>References Historical documents, www...</th>
<th>Risk</th>
<th>Countermesures Words, Drawings, Analysis...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A list of independent functions that the design is to accomplish. Series (1,2,3...) and Parallel (4a, 4b...) FRs (Events) can be listed to create the Function Structure</td>
<td>Ideally independent means to accomplish each FR. AN FR CAN HAVE SEVERAL POTENTIAL DPs. The “best one” ultimately must be selected</td>
<td>Economic (financial or maximizing score etc), time & motion, power, stress… EACH DP’s FEASIBILITY MUST BE PROVEN. Analysis can be used to create DPs!</td>
<td>Anything that can help develop the idea including personal contacts, articles, patents, web sites…</td>
<td>High, Medium, Low (explain why) risk of development assessment for each DP</td>
<td>Ideas or plan to mitigate each risk, including use of off-the-shelf known solutions</td>
</tr>
</tbody>
</table>

- To actually use the FRDPARRC Table:
 - Create one actual table that becomes your development roadmap
 - Dedicate one sheet to each FR/DP pair

The FRDPARRC table is an exceptional catalyst to help you identify opportunities for applying reciprocity to uncover new ideas and solve problems!

© 2000 Alexander Slocum
Design is a Series of Steps Blended Together

- Follow a design process to develop an idea in stages from **COARSE** to **fine**:
 - **First Step:** Take stock of the resources that are available
 - **Second Step:** Study the problem and make sure you have a clear understanding of what needs to be done, what are the constraints (rules, limits), and what are the physics of the problem!
 - Steps 1 & 2 are often interchangeable
 - **Third Step:** Start by creating possible **strategies** (ways to approach the problem) using words, analysis, and simple diagrams
 - Imagine motions, data flows, and energy flows from start to finish or from finish back to start!
 - Simple exploratory analysis and experiments can be most enlightening!
 - Whatever you think of, others will too, so think about how to defeat that about which you think!
 - **Fourth Step:** Create **concepts**, specific ideas for machines, to implement the best **strategies**, using words, analysis, and sketches
 - Use same methods as for **strategies**, but now sketch specific ideas for machines
 - Often simple experiments or analysis are done to investigate effectiveness or feasibility
 - Select and detail the best **concept**…
 - **Fifth Step:** Develop **modules**, using words, analysis, sketches, and solid models
 - **Sixth step:** Develop **components**, using words, detailed analysis, sketches, and solid models
 - **Seventh Step:** Detailed engineering & manufacturing review
 - **Eighth Step:** Detailed drawings
 - **Ninth Step:** Build, test, modify…
 - **Tenth Step:** Fully document process and create service manuals…

© 2000 Alexander Slocum

Courtesy of Alex Slocum. Used with permission.
Occam’s Razor

- William of Occam (or Ockham) (1284-1347) was an English philosopher and theologian
 - Ockham stressed the Aristotelian principle that entities must not be multiplied beyond what is necessary (see Maudslay’s maxims on page 1-4)
 - “Ockham wrote fervently against the Papacy in a series of treatises on Papal power and civil sovereignty. The medieval rule of parsimony, or principle of economy, frequently used by Ockham came to be known as Ockham’s razor. The rule, which said that plurality should not be assumed without necessity (or, in modern English, keep it simple, stupid), was used to eliminate many pseudo-explanatory entities”
 (http://worug.ukc.ac.uk/parallel/www/occam/occam-bio.html)
 - A problem should be stated in its most basic and simplest terms
 - The simplest theory that fits the facts of a problem is the one that should be selected
 - Limit Analysis is an invaluable way to identify and check simplicity

- Use fundamental principles as catalysts to help you
 - Keep It Super Simple (KISS)
 - Make It Super Simple (MISS)
 - Because “Silicon is cheaper than cast iron” (Don Blomquist)
Example: Experimental Design

• Design an apparatus that mimics the motion of a fish backbone

The motion of a fish can be described as a sinusoidal wave of the body with backward velocity \(v \), moving the fish forward with overall velocity \(u \). (a) Demonstrations of this motion with constant amplitude \(A \), for different values of \(u \). (b) In reality, the amplitude increases linearly along the fish’s body. (c) Recorded movements of a cod 0.42 m in length, swimming at 0.9 m/s.

Figure by MIT OpenCourseWare.
Fish Swimming: Hypothesis

Flow over a waving boundary tends to laminarize flow

Traveling wave motion:

- Taneda (1974) shows that flow does not separate off the crest of a waving boundary if the wave phase speed is greater than the free stream speed.
- Numerical simulations by Zhang (2000) illustrate a decrease in turbulence intensity for phase speeds greater than U_o. ($C_p/U_o = 1.2$) at $R_L = 6000$.

\[C_p = w/k \]
Evidence: Flow separation is deterred by traveling wave motion

\[U_o > C_p \]

\[U_o < C_p \]

Taneda (1977)

Design an Experimental Study to get qualitative answers

Reynolds numbers up to 10^6

$$y(x) = a(x) \sin(kx - wt)$$

$$L = 1.25 \times l \text{(Mat Length)}$$

$$l = 1.0 \text{ m}$$

$$a(x) = x/16$$

$$a_{max} = 0.064 \text{ m}$$

$$w = 2pf; \quad k = 2p/l$$
Sketches: Crank-Arm-Piston Assembly

Preliminary Sketches

Preliminary Analysis
Final Piston Assembly

Traveling wave motion is created by a system of eight piston rods which are driven vertically by a crank-arm linkage mechanism.
Drive Mechanism

The plate is driven by a 1/3-Hp DC motor and common drive shaft.
Waving Mat Mechanism

DC Motor

Crank Mechanism

Piston Rods

MIT Propeller Tunnel

Waving Mat

U₀
Waving Mat Construction

Over one wave cycle the mat must be allowed to change length to avoid being stretched, so sliders are built to accommodate this motion, springs enforce smooth motion.
From 3D Cad to actual apparatus
2D drawings

MIT TOWING TANK

DATE: FEB 10, 1999

SCALE: 1.0 : 1.0

PART NO: C502