Photonic Crystals: Shaping the Flow of Thermal Radiation

Ivan Čelanović
Massachusetts Institute of Technology
Cambridge, MA 02139
Overview:

• Thermophotovoltaic (TPV) power generation
• Photonic crystals, design through periodicity
• Tailoring electronic- and photonic bandgap properties: a path towards record efficiencies
• Photovoltaic module: design and characterization
• TPV system design challenges
• Quasi-coherent thermal radiation via photonic crystals
Thermophotovoltaic power generation: basic ideas and concepts
Thermo-photo-voltaic conversion

TPV power conversion describes the direct conversion of thermal radiation into electricity.

Brief History

1956 - Dr. H. Kolm / Dr. P. Aigrain independently propose TPV power conversion concept

1970’s - Loss of interest in TPV due to low efficiencies

1990’s - Advancements in microfabrication technology allow for production of low-bandgap diodes, opening the door for more efficient TPV

1994 - First NREL Conference on TPV Generation of Electricity

2000’s - Photonic crystals for thermal radiation control
Basic TPV energy conversion diagram

1500K blackbody radiation
1300K
1100K
Gallium Antimonide

Heat
Emitter
Blackbody Radiation
Cell Surface Reflection
GaSb
Waste Heat

\[P_{out} \]
PV vs. TPV

<table>
<thead>
<tr>
<th>Properties:</th>
<th>PV (Solar Cells)</th>
<th>TPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Range</td>
<td>Visible and NIR</td>
<td>NIR and IR</td>
</tr>
<tr>
<td>Source</td>
<td>Sun</td>
<td>Thermal emitter</td>
</tr>
<tr>
<td>Source Temperature</td>
<td>Over 5000K (sun’s surface)</td>
<td>1000-1500K</td>
</tr>
<tr>
<td>Distance from Source</td>
<td>Over 90 million miles</td>
<td>µm to cm</td>
</tr>
<tr>
<td>Energy reflected from cell surface</td>
<td>Lost to atmosphere</td>
<td>Recycled to the emitter</td>
</tr>
</tbody>
</table>

Courtesy of DOE/NREL, Credit - Beck Energy.
TPV Technologies and applications

AA radioisotope TPV battery:
- ~10 mWe
- 30 years life time
- 24% efficiency

Photo courtesy of LLNL.

micro-TPV power generator (propane/butane operated):
- 1 Wₑ
- 15% efficiency

10 mm

Courtesy of Klavs Jensen. Used with permission.

Radioisotope TPV power system for deep space and Mars missions

Images courtesy of NASA.

Photo courtesy of Sandia National Labs.
Thermophotovoltaics: converting thermal radiation into electricity, with no moving parts

- GaSb (0.72 eV)
- InGaAs (0.6 eV)
- InGaAsSb (0.53 eV)
- Si (1.23 eV)
Photonic Crystals: shaping thermal radiation

![Graph showing the normalized radiated power versus wavelength (µm)]
TPV Technology roadmap: the time is now

PV diode
- Si and Ge
- III-V’s (GaSb, InGaAs, GaInAsSb)

Spectral control
- Rare earth oxides
- Dielectric stack filters
- Photonic Crystals

System design
- JX
- Thermo Power...

Timeline:
- 1950's
- 1960's
- 1970's
- 1980's
- 1990's
- 2000's
Photonic crystals, design through periodicity
Photonic crystals are periodical structures with 1D, 2D or 3D periodicity

1-D Periodicity
\[\varepsilon(x, y, z) = \varepsilon(x + \lambda_x, y, z) \]

2-D Periodicity
\[\varepsilon(x, y, z) = \varepsilon(x + \lambda_x, y + \lambda_y, z) \]

3-D Periodicity
\[\varepsilon(x, y, z) = \varepsilon(x + \lambda_x, y + \lambda_y, z + \lambda_z) \]
Metamaterial:

optical properties determined from its nanostructure
(rather than its composition)

3D photonic crystal: a "semiconductor for photons"

Controlling density of photonic states

\[u(\omega, T) = N(\omega) \times \left[\frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_B T}} - 1} \right] \]

controlling thermal emission spectrum

- energy density
- density of photonic modes
- energy in each photonic mode

Free Space

Photonic Crystal

Density of States

Density of States

frequency

wavevector

Photonic Band Gap
Photonic crystals are analogous to semiconductors

- Face center cubic lattice
- Forbiddded bandgap states
- Conduction band
- Electronic bandgap E_g
- Valence band
Naturally occurring photonic crystals:

Butterfly wings

Opal

Photo by Megan McCarty at Wikimedia Commons.
Images removed due to copyright restrictions.
Please see: http://www.tils-trr.org/photos/Mitoura-gryMDneo.jpg
http://www.tils-trr.org/photos/Mitoura-gryMVneo.jpg

Fig. 11 in Ghiradella, Helen. "Light and Color on the Wing: Structural Colors in Butterflies and Moths." Applied Optics 30 (1991): 3492-3500.
Fig. S1a, S2, and S4a in Vukusic, Pete, and Ian Hooper. "Directionally Controlled Fluorescence Emission in Butterflies." Science 310 (November 18, 2005): 1151.
Fig. 3 in Pendry, J. B. "Photonic Gap Materials." Current Science 76 (May 25, 1999): 1311-1316.

Tailoring electronic- and photonic bandgap properties: a path towards record efficiencies
Photonic crystal as omnidirectional mirror
1D Si/SiO₂ photonic crystals exhibit omni-directional bandgap.
Spectral characterization of 1D photonic crystal

TEM cross section of LPCVD* grown quarter-wave stack filter with half-layer at the top

Si = lighter layers (170nm)
SiO\textsubscript{2} = darker layers (390nm)

Image removed due to copyright restrictions.
Please see Fig. S2 in Vukusic, Pete, and Ian Hooper. "Directionally Controlled Fluorescence Emission in Butterflies." Science 310 (November 18, 2005): 1151.
Front side PhC designs, 0.72 eV, 0.6 eV, 0.52 eV
1D Si/SiO$_2$ photonic crystals: quarter-wave based stack and genetic algorithm optimized stack as a spectral control tool

Quarter-wave photonic crystal

Genetic algorithm optimized stack

(a) Transmittance vs. Wavelength [µm] for a quarter-wave photonic crystal stack.

(b) Transmittance vs. Wavelength [µm] for a genetic algorithm optimized stack.
Spectral characterization of fabricated 1D photonic crystal

![Graphs showing reflectance vs. wavelength for different TE and TM modes at various angles.](image-url)
Improving the spectral efficiency via selective thermal emission

Selective emitter

Heat

Front-side filter

Waste

Heat
But remember thermal emitter is really hot! (up to 1500K)

Refractory metals have high melting temperature, especially **tungsten**, and that is why it has been used for incandescent light bulbs ever since

William D. Coolidge, invented the process for producing the ductile tungsten in 1909 that revolutionized light bulbs and X-ray tubes. His first light bulb was named “Mazda”

Images removed due to copyright restrictions. Please see:

Adding an array of resonant cavities in tungsten can help us tailor the emittance.

Lorentz-Drude model for tungsten

\[\varepsilon(\omega) = 1 + \sum_j \frac{\omega_{pj}^2}{\omega_j^2 - \omega^2 + i\Gamma_j \omega} \]
2D W PhC as selective thermal emitter:

![Graph showing emittance vs. wavelength for different samples and prototypes.](image1)

- **Prototype 1**
 - Sample area: ~175mm²
 - Period: 1000nm
 - Hole diameter: 910nm
 - Hole depth: 550nm
 - Wall aspect ratio: 0.05

- **Prototype 2**
 - Sample area: ~175mm²
 - Period: 1000nm
 - Hole diameter: 820nm
 - Hole depth: 315nm
 - Wall aspect ratio: 0.09

- **Prototype 3**
 - Sample area: ~225mm²
 - Period: 1000nm
 - Hole diameter: 720nm
 - Hole depth: 600nm
 - Wall aspect ratio: 0.04
2D W PhC exhibits tunable cut-off and resonant enhancement
Fabrication process improvements

• Old

• New
Fabrication Process

Laser Interference Lithography

Development

Soft-mask etch

Hard-mask etch

Photoresist (PR)

ARC

Chrome (Cr)

Tungsten

ARC = Anti-Reflective Coating

Soft-mask removal

Tungsten etch

Hard-mask removal
Tailoring electronic- and photonic bandgap properties: a path towards record efficiencies
GaSb and GaInAsSb diode comparison
Tuning the PhC and PV diode bandgaps: GaSb (0.72 eV) and GaInAsSb (0.52 eV)
Photonic crystals tailoring photonic- and electronic bandgaps

(a) Bandgap tuning

(b) Emittance tailoring
Tuning the PhC and PV diode bandgaps: GaSb (0.72 eV)

<table>
<thead>
<tr>
<th>Spectral efficiency</th>
<th>Above bandgap transmittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D PhC and 2D W PhC</td>
<td>93 %</td>
</tr>
</tbody>
</table>
Photovoltaic module: design and characterization
Simple TPV diode model

\[I = I_{ph} - I_0 \left(\exp \left[\frac{q}{nk_B T_j} (V + IR_s) \right] - 1 \right) - \frac{V + IR_s}{R_{sh}}, \]

(a) Terminal IV curve
(b) Diode IV curve
GaInAsSb diode characterization cont’d

Packaged Cells

External Quantum Efficiency

EQE (Percent)

V (V)

oc

J (A/cm²)

sc

Wavelength (µm)

E(1000)

0 10 20 30 40 50 60 70 80 90 100

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

0 10 20 30 40 50 60 70 80 90 100

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

-2 -1 0
GaInAsSb diode characterization

![Diode images](image1)

![Graphs](graph1)
MIT µ-TPV Generator Project
Key innovations in: photonic crystals, MEMs reactors, power electronics, PV
Photonic crystals tailoring photonic- and electronic bandgaps

(a) Bandgap tuning

(b) Emittance tailoring
Robust, integrated catalytic micro-reactor design
Integrated power electronics controller

Cell I-V Characteristic

MPPT Startup Sweep

MPPT Steady State

single chip integrated MPPT
Quasi-coherent thermal emission via photonic crystals

• Vertical-cavity resonant thermal emitter
• 2D PhC slab resonant thermal emission
Broad-band spectral control

![Broad-band spectral control graph](image1)

Narrow-band spectral control

![Narrow-band spectral control graph](image2)
Vertical cavity resonant thermal emitter is highly-directional, quasi-coherent radiation source
Vertical cavity resonant thermal emitter: narrow-band, highly directional and...
Quasi-coherent thermal emission via photonic crystals

- Vertical-cavity resonant thermal emitter
- 2D PhC slab resonant thermal emission
Black/Gray-Body Physics

Ref: Max Planck, Annalen der Physik, 4, 553, (1901).
Modes of a 2D PhC slab
Fano resonances of a 2D PhC slab

Thermal emittance of a 2D PhC slab

Im(ε) ≈ 0.005

Dependence on angle of observation
Analytical understanding of Fano resonances

\[|a_{PhC}|^2 = \frac{2}{Q_{ABS} Q_{RAD}} \left(\frac{\omega}{\omega_{FANO}} - 1 \right)^2 + \frac{1}{Q_{RAD}} \left(\frac{1}{Q_{RAD}} + \frac{1}{Q_{ABS}} \right)^2 \]

\[Q_{ABS} = \frac{\varepsilon_R}{\sigma \varepsilon_I} \]

\[Q_{ABS} = Q_{RAD} \Rightarrow |a_{PhC}|_{MAX} = 50\% \]
Rules for designing thermal emission

$\omega_{\text{EMIT}}(\theta)$:
- slab thickness
- $\text{Re}(\varepsilon)$
- lattice constant

$\Gamma_{\text{EMIT}} \Leftrightarrow Q_{\text{RAD}}$:
- “size” of holes

Peak emission $\Leftrightarrow Q_{\text{ABS}}$:
- $\text{Im}(\varepsilon)$

\[|a_{\text{PhC}}|^2 = \frac{2}{Q_{\text{ABS}} Q_{\text{RAD}}} \left(\frac{\omega}{\omega_{\text{FANO}}} - 1 \right)^2 + \left(\frac{1}{Q_{\text{RAD}}} + \frac{1}{Q_{\text{ABS}}} \right)^2 \]
An example of thermal design

No absorption, $k_x = 0.2$ ($2\pi/a$)

- $Q_{RAD}=370$
- $Q_{RAD}=2000$

Frequency (c/a)

Loss in Si ($\lambda=5\mu m$)

Thermal Emission [a.u.]

- $T = 750K$
- $T = 1000K$
Quasi-coherent thermal radiation: summary and opportunities

• PhC’s offer unprecedented opportunities for tailoring thermal emission spectra

• Highly anomalous thermal spectra can be obtained

• Even dynamical tuning of spectra is possible

• Research in the combined near-field and quasi-coherent PhC radiation is opening up new frontiers

• Possible applications include: masking thermal targets, coherent thermal sources, high-efficiency TPV generation, chemical sensing, etc.
2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies
Fall 2009

For information about citing these materials or our Terms of Use, visit:\http://ocw.mit.edu/terms.