Chapter 18. Meeting 18, Approaches: Genetic Algorithms

18.1. Announcements

• Next Quiz: Thursday, 15 April (inclusive)
• Sonic system draft due: 27 April
• No class Tuesday, 20 April

18.2. Genetic Algorithms

• Model states of a system (or processes) as an allele, or a fundamental unit of expression
• Two or more alleles form a chromosome; order of alleles generally is significant
• Chromosomes, representing individuals, are collected in a population
• Using a fitness function, each chromosome is given a fitness value
• Chromosomes are mated under conditions where more-fit chromosomes are more likely to mate
 • Two chromosomes can produce two offspring (replacing themselves)
 • Each new chromosome is created by either cloning parents or intermingling their alleles through one or two-point crossover
 • Each child chromosome may undergo mutation at the level of single allele changes or multiple allele changes
• The population is completely replaced through mating
• Numerous cycles of regeneration are completed
• The goal is for the population to evolve the most fit chromosome

18.3. GA History and Common Applications

• First described in depth by John Holland in 1975

• Employed in tasks ranging from computational protein engineering, automatic programming, and the modeling of economic and ecological systems.
• Generally best suited for solving problems that lack rigorous definition

18.4. Encoding the Alleles and Chromosomes

• Many GA designs use binary encoding: 1s and 0s encode desired parameters
• Real-value encoding uses an alphabet of many characters or real numbers
• Many GAs use fixed length chromosomes

18.5. Mutations

• Binary GAs often perform bit-level manipulations
 • Bits can be flipped
 • Segments of bits can be deleted, repeated, or reversed
• Domain-specific GA mutations are possible

18.6. The Fitness Function and Finding Solutions

• The fitness function is the key
• The fitness function expresses the priorities of the system
• GAs can evolve toward a local fitness yet get stuck, not reaching the maximum fitness
• Some systems have employed human-mediated fitness evaluation

18.7. A GA of Pulse Triple Chromosomes

• Project conducted in 2001-2002

• First design for sub-system models in athenaCL, exposed through ParameterObjects
• Alleles are pulse triples
• Chromosome is a sequence of alleles where order is musically performed order
• Fitness function is based on similarity to a target chromosome
- Find temporal distance of note durations, rest durations, and total duration (larger values mean greater distance)
- Find weighted duration of non-matched alleles (non-exact pulse triple matches, where count is multiplied by average allele duration)
- Find weighted duration of non-matched duration ratios (non matching pulse triple ratios, where count is multiplied by average allele duration)
- Sum of these values weighted with values found through experiment: noteDistance*1.50, restDistance*1.50, durDistance*2.33, noMatchAlleleDistance*1.00, noMatchValueDistance*0.66.
- An inverse relation: the larger the value, the greater the distance from the target
- Two point crossover employed in mating
- Mutations are specific to pulse triples
 - Ratio equivalence: multiply or divide divisor or multiplier by 2 or 3
 - Divisor mutate: add or subtract 1 to divisor
 - Multiplier mutate: add or subtract 1 to multiplier
 - Flip note/rest state
 - Inversion: select to lic, reverse the segment with the retrograde of the segment
- Population is initialized through random arrangements of pulse triples found in the source
- For each generation, retain the chromosome that is the best fit (and is unique)
- After generations are complete, order best-fit chromosomes by fitness
- Example: python genetic.py

18.8. GA as ParameterObject

- The gaRhythm ParameterObject

```plaintext
c:: tpv garhythm
Rhythm Generator ParameterObject
{name, documentation}
GaRhythm
garhythm, pulseList, crossover, mutation, elitism, selectionString, populationSize
Description: Uses a genetic algorithm to create rhythmic variants of a source rhythm. Crossover rate is a percentage, expressed within the unit interval, of genetic crossings that undergo crossover. Mutation rate is a percentage, expressed within the unit interval, of genetic crossings
```
that undergo mutation. Elitism rate is a percentage, expressed within the unit interval, of the entire population that passes into the next population unchanged. All rhythms in the final population are added to a list. Pulses are chosen from this list using the selector specified by the control argument. Arguments: (1) name, (2) pulseList (a list of Pulse notations), (3) crossover, (4) mutation, (5) elitism, (6) selectionString ("randomChoice", "randomWalk", "randomPermutate", "orderedCyclic", "orderedCyclicRetrograde", "orderedOscillate"), (7) populationSize

18.9. Evolving African Drum Patterns with a GA

- Slow Agbekor (Chernoff 1979)

© University of Chicago Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Command sequence 1: exploring two durations:
 - cmo mp
 - tmo lg
- tin a 61
- bell line, set to loop
 \[
 \text{tie r l, }\{(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)\}
 \]
- accent the first of each articulation
 \[
 \text{tie a bg,oc, }\{(1,5,5,5,5,5,5)\}
 \]
- tin b 68
- create genetic variations using a high mutation rate
 \[
 \text{tie r gr, }\{(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,2,1)\}, .7, .25, 0
 \]
- tie a bg,oc,\{(1,5,5,5,5,5,5)\}
- cln; clh
- Command sequence 2: combinations of rests and silences
 - emo mp
 - tmo lg
 - tin a 61
 - kagan line, set to loop
 \[
 \text{tie r l, }\{(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,1),(4,2,1)\}
 \]
 - accent the first of each articulation
 \[
 \text{tie a bg,oc, }\{(5,1,5,5,5,5,5,5,5,5,5,5)\}
 \]
 - turning on silence mode will use parameters even for rests
 \[
 \text{timode s on}
 \]
 - tin b 68
 - create genetic variations using a high crossover, no mutation
 \[
 \text{tie r gr, }\{(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,1),(4,2,1)\}, 1, 0, 0
 \]
 - tie a bg,oc,\{(5,1,5,5,5,5,5,5,5,5,5,5)\}
 - turning on silence mode will use parameters even for rests
timode s on
• cln; elh

• Command sequence 3: multiple rhythmic values:
 • emo mp
 • tmo lg
 • tin a 61
 • *kraboto line, set to loop*

 tie r l,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,2,1),
 (4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1),
 (4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)]

 • *accent the first of each articulation*

 tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)

 • tin b 68

• *create genetic variations using a high crossover and mutation rate and some elitism*

 tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,2,1),
 (4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1

 • tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)

 • cln; elh

18.10. Polyphonic African Drum Patterns with a GA

• Slow Agbekor (Chernoff 1979)
• Command sequence:

 • emo mp
 • tmo lg
 • tin a 45
 • tie r gr,[(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1),(4,4,1),(4,4,1),(4,4,1),(4,2,1)],.7,.15,0
 • tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)
 • tin b 60
 • create genetic variations using a high crossover, no mutation

 tie r gr,[(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,0),(4,2,1),(4,2,1),(4,2,1),(4,2,1)],1,0,0
 tie a bg,oc,(-5,1,-5,-5,5,5,5,-5,5,5,-5,5)

© University of Chicago Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
• *turning on silence mode will use parameters even for rests*

 timode s on

• *tin c 68*

• *create genetic variations using a high crossover and mutation rate and some elitism*

 tie r gr,[(4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1),
 (4,3,1),(4,1,1),(4,2,1),(4,2,1),(4,1,1),(4,1,1),(4,2,1)],.9,.25,0.1

• *tie a bg,oc,(1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)*

• *eln; elh*

18.11. Reading: Biles, GenJam in Perspective: A Tentative Taxonomy for GA Music and Art Systems

• What are the alleles and chromosomes in this study?

• At what level of the chromosome do the mutations operate? What types of mutations are used

• How is fitness measured?

• How does the concept of “musically meaningful mutations” deviate from conventional GAs?

• Which does the author suggest are more solution-rich: artistic domains or non-artistic domains?

18.12. GenJam Example

• Video: Demonstration created in 2003

18.13. Reading: Magnus, Evolving electroacoustic music: the application of genetic algorithms to time-domain waveforms

• What are the alleles and chromosomes in this study?
• What types of mutations were explored in this study?
• Is there a distinction between genotype and phenotype?
• The author writes: “at each stage of programming, choices must be made that introduce designer bias into the system”; is this a problem?