Beer Brewing, Steam Engines, and the Fate of the Cosmos

Prof. David Kaiser
Monday, October 18, 2010, STS.003
Motion unit

Overarching questions:
Are the motions of objects subject to universal laws?
Does science drive technology, or the other way around?

I. Powering a Revolution

II. Heat as Fluid or Motion?

III. God, Man, and Waste

Readings:
- Joule, “Mechanical equivalent of heat,” 166-183;
Powering a Revolution

Steam engines were invented in the early 18th century. Glasgow engineer James Watt made important improvements in the 1760s – 1780s.

England had already been the center of the textile industry. The steam engine helped automate the spinning of wool and cotton into fabrics – and thus helped launch the Industrial Revolution.
Steamships

Inventors began powering boats with steam engines soon after Watt’s improvements.

The first commercially viable steamship line was launched by Robert Fulton in 1807. The steamer went between New York City and Albany.
Railroads

By the early 19th century, steam engines were powering the first railroads as well.

The first inter-city railway, complete with posted timetables, ran between Liverpool and Manchester, beginning in 1830.

A. B. Clayton, Inaugural Journey of the Liverpool and Manchester Railway, 1830

First steam-powered locomotive, England, 1804
Industrial Cities

Glasgow:
- 84k in 1801;
- 270k in 1840

Manchester:
- 20k in 1750;
- 300k in 1850

John Grimshaw, *Shipping on the Clyde*, Glasgow, 1881

McConnel & Co.’s cotton mills, Manchester, ca. 1820
Engines and Empire

Brittain built its empire with sail; it governed with steam. Constant focus on improving *efficiency* of steam engines. E.g., could a steamship travel all the way to Australia without stopping to refuel?
Heat as Fluid

Lavoisier, 1780s: heat is a form of matter — an “imponderable fluid” that Lavoisier named *caloric*.

Heat exchange occurred because caloric flowed from one body to another.

Natural philosophers puzzled over caloric in the light of phase transitions. E.g., ice could absorb heat without rising in temperature.
Sadi Carnot (1796 – 1832) was a French engineer. He sought to understand heat flow and the efficiency of engines for both scientific and political reasons.

Following Napolean’s defeat by the British in 1815, several British-designed steam engines appeared in France. Carnot sought to understand how the British had advanced so far beyond the French in steam-engine design.
Carnot Cycle

Lavoisier: matter is neither created nor destroyed.

Carnot: caloric, too, must be conserved.

Heat engines did work by getting caloric to flow from a high-T reservoir to a low-T one.

“The production of motive power is then due in steam engines not to actual consumption of the caloric but to its transportation from a warm body to a cold body.”
A Brewer’s Son

James Joule (1818 – 1889) was the son of a wealthy brewer in Manchester. He was tutored by John Dalton (of atomism fame); his father built him his own laboratory at home.

At the time, brewers had the most experience with delicate measurements of temperature. They also had the most accurate thermometers (good to 1/20th degree F).
“Formerly the lower classes who were, and still are, the principal consumers of beer, thought it a mark of effiminate refinement to require a glass to drink their beer from; and however thick the fluid, it flowed from the pewter pot, with inexpressible zest down their callous throats, and all was well: but not so in the present day! Nothing less than a clean glass filled with ale of sparkling brilliancy will suffice for the lowest of the low ... Formerly the brewer was required to furnish beer to the public at the age of one, two, and three years... But such beer will not now be commonly drunk, and the brewer is required to brew all the year through, and to furnish it to the public at the end of a few days after brewing, perfectly mild, full, and transparent. Now to do this in hot weather, is certainly no easy task to the uninitiated.”

G. A. Wigney, An Elementary Dictionary for the use of Malsters, Brewers, Distillers (1838)
“Mechanical Equivalent of Heat”

“In 1845 and 1847, I employed a paddle wheel to produce the fluid friction, and obtained the equivalents 781.5, 782.1, and 787.6 [foot-pounds], respectively, from the agitation of water, sperm oil, and mercury.”

“Results so closely coinciding with one another, and with those previously derived from [other] experiments, ... left no doubt on my mind as to the existence of an equivalent relation between force [or motion] and heat.”
Heat as Motion

Joule considered his experiments to be clear proof that heat was simply a form of *motion*, not a conserved fluid like caloric.

Though he managed to publish several papers and present his work at meetings like the British Association for the Advancement of Science (BAAS), few took his work seriously.

No one could replicate his findings; and his claimed accuracy was beyond what most natural philosophers could believe, much less achieve.
Glaswegian Theorist

William Thomson (later Lord Kelvin, 1824 – 1907) was one of the few to listen to Joule. Thomson had an ideal background for the topic: his brother, James, was a steam engineer, and William grew up tinkering with machines.
Cambridge Training

Thomson had been trained in mathematical physics at Cambridge. His work relied on mathematical analogies, e.g., heat flow and hydrodynamics.

In 1848-49, Thomson tried to reconcile Carnot’s work (based on caloric) with Joule’s experiments. In the process, Thomson invented the absolute temperature scale (° Kelvin), including absolute zero.
Tripos: 3-day exam, rank-order results published in national newspapers. One’s score determined one’s future prospects.
James Ward’s 1875 diary:

1. To be out of bed by 7:35 (or on Sundays 8:45)
2. To do 5 hours work before hall [lunch]
3. At least one hours [athletic] exercise after hall
4. Three hours work after hall
5. Finish work by 11 and be in bed by 11:30 (except on Saturday when it is 12)
6. A fine of 3d to be paid for the first rule broken on any day and 1d every other rule broken on the same day
7. A halfpenny to be allowed out of the fund to every member waking another between 6:35 and 7:35 on weekdays and between 7:45 and 8:45 on Sundays
8. Work before 8am may count either for morning or evening work of the day
9. Time spent at Church Society meeting counts for half the same time’s work and also allows the member attending to work till 11:30 and stay up till 12
10. These rules binding till further notice and any alteration of them requires unanimity.
Excerpt on the Lamé equation removed due to copyright restrictions.
Increasing Disorder

Rudolf Clausius (1822 – 1888) followed Thomson’s papers closely. He was the first to reconcile Carnot and Joule, in 1850.

The essential point of Carnot’s work (said Clausius) was that the heat engine worked by getting heat to flow from hot to cold. One need not further assume that heat (or caloric) was conserved.

Clausius: whenever work was produced by heat, some heat (proportional to the work done) must be consumed. He went on to define entropy: \(\Delta S = \Delta Q / T \geq 0. \)
Indestructible, but Dissipative

Thomson in turn built upon Clausius’s work. By early 1851, Thomson showed that Clausius’s results implied that total energy was conserved — energy was indestructible — and yet some portion of it would be dissipated into an unusable form in the process of generating work.

Thomson, Clausius, and others thus articulated the first two laws of thermodynamics, ca. 1850.
Statistically Speaking

Clausius and Thomson considered entropy increase to be a universal law, akin to Newton’s laws.

James Clerk Maxwell and Ludwig Boltzmann agreed that heat was just the motion of small bodies; they tried to formulate a statistical treatment of all those tiny motions.

\[\Delta S \geq 0 \] is a statistical regularity, but not an unbreakable law. Back to Aristotle: “always or for the most part.” First serious check on Newtonian determinism.
God and Motion

For Thomson, the 1st and 2nd laws of thermodynamics fit a larger theological view.

In his strict Scottish Presbyterian view, the material world is in constant flux and decay.

To Thomson, everything that God made is perfect and eternal, but everything that people make is imperfect and corruptible.
Work and Waste

To Thomson, the conservation of energy (1st law) meant that only God can create and destroy energy.

But people can *dissipate* that energy – not destroy it, but render it into a less-useful state (2nd law). The 2nd law seemed to open space for human *free will* – but also for human responsibility.

Thus the 2nd law entailed a *moral* requirement, bolstering the famous “Protestant work ethic”: always do what you can to conserve useful work. Work hard, waste not.
Directionality

The 2nd law of thermodynamics also implied that the universe has a \textit{direction}. Newton’s laws of motion are perfectly reversible. Not so a heat-filled world.

Akin to the historical impulse that flourished in the 19th century, in fields like natural history, geology, and evolution.

But when Thomson calculated how old the earth could be, based on its rate of cooling from molten rock, he found \(t = 20 - 400 \) million years. Much too short to match geological and evolutionary ideas.
An Unseen World

Thomson read a *progressive* lesson in the directionality of the 2nd law.

His colleagues, Peter Tait and Balfour Stewart, went further. Only in our physical surroundings does useful energy degrade and dissipate. That dissipated energy cycles back to an unseen (spiritual) world, which is perfect and unchanging.

“We endeavor to show that immortality is strictly in accordance with” the latest developments in thermodynamics.
An Unhappy Ending...

Rudolf Clausius: Upon reaching a state of maximum entropy, “the universe from that time forward would be condemned to a state of eternal rest.”

Camille Flammarion, *Le fin du monde*, 1893

“The universe would be in a state of unchanging death.” Rudolf Clausius, 1867