<table>
<thead>
<tr>
<th>Principles</th>
<th>Policy</th>
<th>Management</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **M** | • External Accounts (BB)
 • Internal Accounts (NN)
 • Automatic Adjustment
 • Active Adjustment (Fiscal, Monetary, Exchange, Wage)
 • Structural Reforms
 • BBNN at the industry level
 • Automatic and Active Adjustment | • Decision Rules
 • Product Markets
 • Financial System
 • Macro Prudential Regulation
 • Fiscal and Monetary Institutions |
| **I** | • Consistent Designed
 • Market Inefficiency | • Demand Institutionality | • Public Choice
 • Social Insurance
 • Unacceptable outcomes
 • Property Rights |
| **S** | • Social Aspirations
 • Political Aspirations
 • Standards of Living (SP)
 • Message
 • Representation
 • Transparency
 • Accountability
 • Political Influence
 • Community Reach
 • Corruption
 • Commitment versus Involvement | • Demand Institutionality | • Social & Personal needs
 • Political Voice & Representation
 • Justice & equality
 • Individual & Civil rights |
| **E** | • Environmental (EE)
 • Regeneration and Harvesting
 • Waste Generation and Recycling
 • Technology Improvement and Stocks
 • Demand Control
 • Biased Technological Improvement
 • Biased Consumption Mixture
 • Market Interventions: Prices and Quotas
 • Production Mix
 • Inputs Mix (Materials & Energy)
 • Living at the Margin of the Unmeasurable | • Demand Institutionality | • Regulation (Markets, Prices, Quotas)
 • International Coordination |
Currency, CryptoCurrencies, and BitCoin
Physical Properties of Currency

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divisible</td>
<td>A currency must be divisible so that units of its value can be paid to match the value of your purchase.</td>
</tr>
<tr>
<td>Scarce</td>
<td>Money has to be sufficiently rare. If the medium of the currency is easily obtainable or reproducible, it will have little worth and be easily counterfeited.</td>
</tr>
<tr>
<td>Portable</td>
<td>For a currency to be convenient, it must be portable.</td>
</tr>
<tr>
<td>Uniform</td>
<td>Every unit of a currency must be equal in value. Diamonds are not fungible because there are other properties of a diamond that makes it worth more or less than any other diamond.</td>
</tr>
<tr>
<td>Durable</td>
<td>Money must not have a property that allows it to decay over time. Any perishable items are a good example of this: Apples, Spices, Tea, Milk, etc.</td>
</tr>
<tr>
<td>Acceptable</td>
<td>Trusted and accepted by all</td>
</tr>
</tbody>
</table>
Currency

- **Economic Properties**
 - **Store of value**
 - Money must be able to be reliably saved, stored, and retrieved – and be predictably usable as a medium of exchange when it is retrieved.
 - The value must remain relatively stable over time.
 - **Medium of exchange**
 - Used to intermediate the exchange of goods and services.
 - For comparing the values of dissimilar objects.
 - Standard of deferred payment
 - Money is an accepted way to settle a debt.
 - When debts are denominated in money, the real value of debts may change due to inflation and deflation.
 - **Unit of Account**
 - A unit of account is a standard numerical monetary unit of measurement of the market value of goods, services, and other transactions.
 - Divisibility
 - Fungibility
Barter

Courtesy of FREE to use clip art. Source: Clipart Finders.
Goods *BECOME* Money

- Acceptable
- Durable
- Portable
- Scarce
- Divisible
- Recognizable

Peacefully and voluntarily, markets choose money.
Gold Storage -> Paper Receipts

<table>
<thead>
<tr>
<th>Gold Claims</th>
</tr>
</thead>
</table>

England, 17th Century

This image is in the public domain. Source: [Wikimedia Commons](https://commons.wikimedia.org/wiki/File:Gold_Storage.png).

Screenshot © Paul Grignon, 2006. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Payment System

• Infrastructure
 – Operational network
 – Clearing system
 – Governed by laws, rules and standards
 – Links bank accounts for monetary exchange

• Security
 – Identification
 – Verifiability
 – Reversibility

• Payments
 – Instead of physical cash uses other instruments
 • Traditional
 – Checks and Money orders
 • Newer
 – Debit card, credit card, electronic transfers, internet banking, e-commerce
Public Ledger

- A very easy way to have a clearing system: public ledger written in stone!
 - Every transaction is written in stone
 - Everybody can verify
 - Transactions are not reversible
 - Hard to commit fraud (need another stone)
- Bitcoin has the same features....
What makes a good...

<table>
<thead>
<tr>
<th>Currency?</th>
<th>Payment System?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust</td>
<td>Trust</td>
</tr>
<tr>
<td>No counterfeiting</td>
<td>Verification of ownership</td>
</tr>
<tr>
<td></td>
<td>Verification of transaction</td>
</tr>
<tr>
<td>Anonymity</td>
<td>No Anonymity: Control Criminal Behavior</td>
</tr>
<tr>
<td>Clearing Automatic</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>Low Transaction Cost</td>
</tr>
<tr>
<td>Managed by Central Bank to deal with demand shocks</td>
<td>No Monetary or Fiscal Policy tool</td>
</tr>
<tr>
<td>Denomination of Contracts</td>
<td>No Denomination</td>
</tr>
<tr>
<td>No issue with Liquidity</td>
<td>Exchange System to guarantee liquidity</td>
</tr>
<tr>
<td>Peer to Peer</td>
<td>Needs Clearing System</td>
</tr>
</tbody>
</table>
BitCoin
What is Bitcoin?

• A peer-to-peer internet currency that allows decentralized (verification) transfers of value between individuals and businesses.
 – **Bitcoin** is the system
 – **bitcoins** are the units

• In economic terms
 – An International Currency
 – An international clearing system
 – A payment system/network
Creating a currency from scratch

• Motivation
 – Distrust of financial institutions
 – Transaction costs
 – CB Manipulation

• Primary concerns
 – Transaction security
 – Double spends
Stripping down BitCoin

How a macroeconomist thinks about the elements of BitCoin?

<table>
<thead>
<tr>
<th></th>
<th>How it is?</th>
<th>How it should be?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td>Ledger</td>
<td></td>
</tr>
<tr>
<td>Clearing Transactions</td>
<td>BlockChain</td>
<td></td>
</tr>
<tr>
<td>Clearing House</td>
<td>Miners</td>
<td></td>
</tr>
<tr>
<td>Currency of Transaction</td>
<td>BitCoin</td>
<td></td>
</tr>
<tr>
<td>Currency</td>
<td>BitCoin</td>
<td></td>
</tr>
<tr>
<td>Form of Transaction</td>
<td>P2P + Anonymous</td>
<td></td>
</tr>
</tbody>
</table>
Transaction security

• Two levels of verification
 – Source is legitimate
 – Coins are legitimate

• Encryption
 – Public and private key verification ensures the legitimacy
TheoryCoin: (coins to ppl)

Encryption

Input

- Fox
 - cryptographic hash function
 - Digest: DFCD 3454 BBEA 788A 751A 696C 24D9 7009 CA99 2D17

- The red fox jumps over the blue dog
 - cryptographic hash function
 - Digest: 0086 46BB FB7D CBE2 823C ACC7 6CD1 90B1 EE6E 3ABC

- The red fox jumps over the blue dog
 - cryptographic hash function
 - Digest: 8FD8 755B 7851 4F32 D1C6 76B1 79A9 0DA4 AEFE 4819

- The red fox jumps over the blue dog
 - cryptographic hash function
 - Digest: FCD3 7FDB 5AF2 C6FF 915F D401 COA9 7D9A 46AF FB45

- The red fox jumps over the blue dog
 - cryptographic hash function
 - Digest: 8ACA D682 D588 4C75 4BF4 1799 7D88 BCF8 92B9 6A6C
Double spends

• If the money is just digital codes, why not copy and paste to make more money?
 – Timestamps
 • Each transaction is packaged and publically recorded in the order it was carried out.
 – Hashes
 • The time-stamped group of transactions are given a unique algorithmically derived number
 – Block chain
 • Transactions are recorded in a community-built record of all transactions that acts as a proof-of-work.
 • Computers connected to the network accept the longest chain as accurate.
Digi-cash: Remittances

• anonymous
• secure (no double-spending)
• only transfer (no creation/storage)

...and bankrupted in 1999
The advent of Bitcoin

• 2009: **Bitcoin announced** by Satoshi Nakamoto
 – Pseudonym for person or group of person

• 2009-2011: slow start...

• 2011-2013: Silk Road and Dread Pirate Roberts

• End 2013: **Bitcoin price skyrockets**
 – and the world notices!
Elements of Bitcoin

- **Individuals**
 - Wallet (accounts)
 - Identity is anonymous
 - Private Key (sk)
 - Public Key (vk)

- **Transactions**
 - Peer-to-peer (decentralized)
 - Digital Signatures
 - Verification of “identity”
 - All transactions are public

- **Transaction Block**
 - List of transactions that are unrecorded

- **Transaction Block Chain**
 - List of transactions that have been recorded: Public Ledger

- **Miners**
 - **Objective**
 - Validate Transactions
 - Clearing house
 - Record transactions
 - Solve a complicated mathematical problem
 - Proof – of – work
 - **Remuneration**
 - When a block of transactions is recorded
 - Transaction fees
Elements of Bitcoin

Bn-1
T1: P1 a coins to P2......
T2: P1 b coins to P3......

Bn
T3...
T4...

Bn+1
T5...
T6...
Miners

• Mining is the process of adding transaction records to Bitcoin's public ledger of past transactions.
 – This ledger of past transactions is called the block chain as it is a chain of blocks.
 – The block chain serves to confirm transactions to the rest of the network as having taken place.
 – Bitcoin nodes use the block chain to distinguish legitimate Bitcoin transactions from attempts to re-spend coins that have already been spent elsewhere.

• Mining is intentionally designed to be resource-intensive and difficult so that the number of blocks found each day by miners remains steady.
 – Individual blocks must contain a proof of work to be considered valid.
 – This proof of work is verified by other Bitcoin nodes each time they receive a block.
 – Bitcoin uses the hashcash proof-of-work function.

• The primary purpose of mining is to allow Bitcoin nodes to reach a secure, tamper-resistant consensus.
TheoryCoin: How to transfer money

\[m_1 = \text{"P3 gives coin 3 to P1"} \]
\[s_1 = \text{Sig(stk3, } m_1) \]

\[m_2 = \text{"P3 gives coin 3 to P2"} \]
\[s_2 = \text{Sig(stk3, } m_2) \]
What info is in the transaction?

<table>
<thead>
<tr>
<th>Field Size</th>
<th>Description</th>
<th>Data type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>version</td>
<td>uint32_t</td>
<td>Transaction data format version</td>
</tr>
<tr>
<td>1+</td>
<td>tx_in count</td>
<td>var_int</td>
<td>Number of Transaction inputs</td>
</tr>
<tr>
<td>41+</td>
<td>tx_in</td>
<td>tx_in[]</td>
<td>A list of 1 or more transaction inputs or sources for coins</td>
</tr>
<tr>
<td>1+</td>
<td>tx_out count</td>
<td>var_int</td>
<td>Number of Transaction outputs</td>
</tr>
<tr>
<td>9+</td>
<td>tx_out</td>
<td>tx_out[]</td>
<td>A list of 1 or more transaction outputs or destinations for coins</td>
</tr>
</tbody>
</table>

The block number or timestamp at which this transaction is locked:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not locked</td>
</tr>
<tr>
<td>< 5000000000</td>
<td>Block number at which this transaction is locked</td>
</tr>
<tr>
<td>>= 5000000000</td>
<td>UNIX timestamp at which this transaction is locked</td>
</tr>
</tbody>
</table>

If all TxIn inputs have final (0xffffffff) sequence numbers then lock_time is irrelevant. Otherwise, the transaction may not be added to a block until after lock_time (see NLockTime).
TheoryCoin: Proof of Work

1. Everyone **tries to solve** a puzzle

2. The **first one** to solve the puzzle **gets 1 TC**

3. The solution of **puzzle i** defines puzzle $i+1$
TheoryCoin: Proof of Work

The puzzle:
given L, find R such that \(T = 0^d \)

S aka Proof-of-Work
TheoryCoin: Proof of Work

L = 011001100101010....
R = ??????....

T = 000000...0000xxxxxx

Public Ledger
- Previous hash
- New transactions

Hash for next block

d elements are zero

- Trial and error
- The more zeros the harder the problem: 2^d transactions
TheoryCoin: (coins to ppl)
How to create money

x₀ = Start!
x₁ = (P₁, i₁)
x₂ = (P₂, i₂)
x₃ = (P₃, i₃)

* aka the blockchain

SolvePuzzle(L) {
 repeat {
 R = my_name || i++
 T = H(L, R)
 } while (T ≠ 0ᵈ)
 return R
}
Problems

• Disclaimer: I am extremely affected by my research on law enforcement!
 – What is the purpose of the “coin”?
 – Why the remuneration to the miners is a tax on all holders, as opposed to a tax on each transaction?
 – Why the transactions need to be anonymous?
 • I understand confidentiality but anonymity?
Anonymity

• Volume and Weight of Cash
 – 1 Billion dollars in “new” 20 dollar bills
 • 50 million notes
 • Stack of 5km (3.11 miles)
 • Volume of 52 thousand litters (1.7 times a typical container)
 • Weights 50 tons
 – In BitCoin?
Payment System with Fixed Exchange Rate: Dollars as Collateral

One Bitcoin is a claim on one Dollar

Objectives of exchanges:
- Guarantee value of claims in the Bitcoin world
- Guarantee liquidity
- Guarantee convertibility

Miners:
- Payment CANNOT be paid by creation of Bitcoins
- Remuneration exclusively based on transaction fees
 - Constant “fee” charged per block
Payment System with Flexible Exchange Rate: Dollars as Collateral

One Bitcoin is a NOT claim on a Dollar.

Exchanges
- Inflation Targeting rules
 - Exchange rate risk
 - CPI target
- Pure payment system
 - International Transfers need to be arranged in the formal Banking system
 - Accounts might not need to be anonymous
- Remuneration
 - Taxes on participants
 - Capitalization of central exchange

Miners
- Payment CANNOT be paid by creation of Bitcoins
- Remuneration exclusively based on transaction fees
 - Constant “fee” charged per block
Payment System with Flexible Exchange Rate: Dollars as Collateral

Demand Shock: BBNN

Active Monetary Policy requires a tightening after a boom and a loosening after a recession

Supply Shock: BBNN

Active Monetary Policy should validate the new equilibrium. No need to “fight” the economy
What are the problems?

• Money Management
 – Good monetary policy needs active management of the money supply
 • Shocks to the aggregate demand need to be accommodated
 • Shocks to the aggregate supply should not be accommodated
 – Bitcoin has a parsimonious printing
 • This means that the adjustment occurs through inflation and deflation
 • Asymmetry: Cost of lowering prices and wages is larger than the cost of increasing prices and wages

• Criminal behavior
 – Anonymity and confidentiality is good for small transactions
 – Verifiability and openness is good for financial transactions

• Lack of reversibility
 – Some transactions need to be reversed (flash crash, and human error)

• What is Bitcoin?
 – A decentralized clearing system
 – A decentralized system of payments
 – A decentralized currency
What I would do?

<table>
<thead>
<tr>
<th></th>
<th>How it is?</th>
<th>How it should be?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td>Ledger</td>
<td>Ledger</td>
</tr>
<tr>
<td>Clearing Transactions</td>
<td>BlockChain</td>
<td>BlockChain</td>
</tr>
<tr>
<td>Clearing House</td>
<td>Miners</td>
<td>Miners</td>
</tr>
<tr>
<td>Currency of Transaction</td>
<td>BitCoin</td>
<td>BitCoin</td>
</tr>
<tr>
<td>Currency</td>
<td>BitCoin</td>
<td>Basket</td>
</tr>
<tr>
<td>Form of Transaction</td>
<td>P2P + Anonymous</td>
<td>P2P</td>
</tr>
</tbody>
</table>

Remuneration in fee-for-use not money creation

Fixed to a single currency or a basket

Confidential but NOT Anonymous
Technical Slides
TheoryCoin: How to transfer money

(Digital) Signatures

– Only you can sign
– Everyone can verify
– You cannot deny

Give coin 3 to Schmittlein

Roberto
TheoryCoin: How to transfer money

"Your pin code"
secret key
message

Gen
message, signature

"Your username"
public key

Sign
accept/reject

Verify
TheoryCoin:
How to transfer money

$m = "P3 \text{ gives coin 3 to P1}"
\>
s = \text{Sig}(sk3,m)$

If $\text{Ver}(pk3,m,s) = \text{accept}$ and P3 owns coin 3 then return accept

$x_0 = \text{Start!} \quad x_1 = (P_1, i_1) \quad x_2 = (P_2, i_2) \quad x_3 = (P_3, i_3)$
TheoryCoin:
How to transfer money

\[m_1 = \text{“P3 gives coin 3 to P1”} \]
\[s_1 = \text{Sig}(sk_3, m_1) \]

\[m_2 = \text{“P3 gives coin 3 to P2”} \]
\[s_2 = \text{Sig}(sk_3, m_2) \]

* aka double spending
TheoryCoin: How to create money
(Double Spending)
TheoryCoin: How to store money

Main Idea:
Record **transfers** in the **blockchain**
How is money created in Bitcoin?

• New block every ~10 mins
 – d adjusted every ~2000 blocks

• $H = 2^{\text{SHA2}}$

• Initial reward: 50 BTC
 – Halved every ~4 years (now 25 BTC)