Traffic

Forecast: Number of cars will increase further
Fact: Infrastructure will not be enhanced to the same extent
Remedy: Improve the efficiency of traffic by other means

Effective Route Guidance in Traffic Networks

Lectures developed by
Andreas S. Schulz and Nicolás Stier

May 12, 2003

2002 Urban Mobility Study
(http://mobility.tamu.edu/ums)

“The bad news is that even if transportation officials do all the right things, the likely effect is that congestion will continue to grow . . .”

• Total congestion “bill” in 2000 was $67.5 billion
 (= 3.6 billion hours delay + 5.7 billion gallons gas)

<table>
<thead>
<tr>
<th></th>
<th>1982</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>time penalty for peak period travelers</td>
<td>16 hours</td>
<td>62 hours</td>
</tr>
</tbody>
</table>

Problem

People travel (between 6% and 19%) too much because of an unfavorable selection of their route.

(Beccaria & Bolelli 1992, Lösch 1995)

Outline

• Lecture 1
 Route Guidance; User Equilibrium; System Optimum; User Equilibria in Networks with Capacities.
• Lecture 2
 Constrained System Optimum; Dantzig-Wolfe Decomposition; Constrained Shortest Paths; Computational Results.

The Context

• Olaf Jahn (Research Assistant).
• Rolf H. Möhring (Principal Investigator).
 Collaboration with and support by DaimlerChrysler, Berlin.
• Nicolas Stier (Research Assistant).
• Andreas S. Schulz (Principal Investigator).
 Supported by General Motors Innovation Grant and SMA.
Shortest Path Routing

Improved network performance, but . . .

(Kaufman et al. 1991, Lee 1994)

Potential Remedies

• Toll systems
• Dynamic traffic signal control
• Park and Ride
• Traveller information systems

Shortest Path Routing II

. . . the same simulations show the performance decreases as soon as many cars use the system.

Proposed Solutions

• Multiple path routing:
 – k shortest paths
 – random perturbation

• Feedback control:
 – iterative computation of shortest paths

• Traffic assignment:
 – user equilibrium
 – system optimum
 – a new approach

In-Car Navigation Systems
Modeling Assumptions

Reality

- microscopic
 → individual vehicles
 → exact position, speed

- dynamic
 → consider time
 → on a single point at any time

- on-line
 → additional input over time

Our Model

- macroscopic
 → one abstract measure
 → traffic flow

- static
 → time independent
 → simultaneously at any point of the path

- off-line
 → all data known in advance

<table>
<thead>
<tr>
<th>selfish users</th>
<th>central planner</th>
<th>the goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimize own travel time</td>
<td>optimize system welfare</td>
<td>fair, efficient</td>
</tr>
<tr>
<td>fair, not efficient</td>
<td>efficient, not fair</td>
<td>fair, efficient</td>
</tr>
</tbody>
</table>

Representation of the Road Network

How much can one gain?

- Study worst-case ratios between guided / unguided traffic

- Without guidance: use game theory to predict traffic
 (Wardrop 1952)

- Users’ behavior modeled as user equilibrium (Nash eq.)

- Price of anarchy is a measure of user equilibrium performance
 (Papadimitriou 2001)

Flows

- Different drivers have different origins and destinations

- Flows on paths: f_P is the traffic along path P

- Flow on arcs:
 $$f_a = \sum_{P \in a} f_P$$
The Traffic Model

- Directed graph $G = (V, A)$, k demands (o_i, d_i) with rate r_i
- Flows on paths f_P. Can be non-integral.
- Traversal times: latency functions $t_a(\cdot)$
 - continuous and nondecreasing
 - belong to a given set \mathcal{L} (e.g. linear)
- The total travel time of a flow is:
 \[
 C(f) := \sum_{a \in A} t_a(f_a)f_a
 \]

Traversal Time Functions

- Traversal time of an arc a depends on the flow f_a on a
- Dependence captured by the function $t_a(f_a)$
- Travel time along path P is denoted by $t_P(f) = \sum_{a \in P} t_a(f_a)$

System Optimum

Convex Multicommodity Min-Cost Flow Problem

\[
\begin{align*}
& \min \sum_{a \in A} t_a(f_a)f_a \\
& \text{s.t.} \sum_{P \ni a} f_P = f_a \quad \text{for all } a \in A \\
& \quad \sum_{P \in \mathcal{P}_i} f_P = r_i \quad \text{for all } i = 1, \ldots, k \\
& \quad f_P \geq 0 \quad \text{for all } P \in \mathcal{P}
\end{align*}
\]

where

- \mathcal{P}_i : set of paths from o_i to d_i
- $\mathcal{P} = \bigcup_i \mathcal{P}_i$

Example of SO

(Pigou 1920)

\[
\text{SO} = \min f_a + f_b^2
\]

\[
\text{s.t. } f_a + f_b = 1 \\
\quad f_a, f_b \geq 0
\]

The Traffic Model

- Directed graph $G = (V, A)$, k demands (o_i, d_i) with rate r_i
- Flows on paths f_P. Can be non-integral.
- Traversal times: latency functions $t_a(\cdot)$
 - continuous and nondecreasing
 - belong to a given set \mathcal{L} (e.g. linear)
- The total travel time of a flow is:
 \[
 C(f) := \sum_{a \in A} t_a(f_a)f_a
 \]

2 \cdot 4 + 2 \cdot 1 = 10

2 \cdot 3 = 6
Braess Paradox

- **UE non-monotone with network improvements** (Braess 1968)

![Network Diagram](image)

Example of SO

(Pigou 1920)

\[
SO = \min f_a + f_b^2 = \min f_b^2 + 1 - f_b = 3/4 \quad \text{and} \quad f_a = \frac{1}{2}, \quad f_b = \frac{1}{2}
\]

\[
\text{s.t. } f_a + f_b = 1 \quad \text{s.t.} \quad 0 \leq f_b \leq 1 \quad f_a, f_b \geq 0
\]

User Equilibrium

Definition: A flow is a **UE** iff nobody can switch to a path with smaller travel time.

- Travel times of users between the same OD-pair are equal
- **UE** always exists and is unique
 (Beckmann et al. 1956)

![User Equilibrium Diagram](image)
Networks with Capacities

- Latencies model capacity only implicitly

What is the impact of having explicit capacities on arcs?

- Introduce capacities as hard constraints

- Straightforward to define SO

- What is now a UE?

Braess Paradox

- UE non-monotone with network improvements

(Braess 1968)

Equilibria in Networks with Capacities

Definition: A flow is a capacitated UE iff nobody can switch to a path with smaller travel time and residual capacity

- Travel times for users of same demand may differ (were constant w/o cap.)

- There may be multiple equilibria (UE w/o cap. was unique)

- How good is the best / worst eq.?

Price of Anarchy measures impact of lack of Central Coordination

(Papadimitriou 2001)

\[
\gamma := \max_{\text{inst.}} \frac{C(\text{UE})}{C(\text{SO})}
\]

- In general, \(\gamma \) unbounded

(Roughgarden & Tardos 2000)

- If latencies are in \(\mathcal{L} \), \(\gamma \leq \alpha(\mathcal{L}) \), where \(\alpha(\mathcal{L}) \) depends only on \(\mathcal{L} \)

In particular, \(\alpha(\{\text{linear latencies}\}) = 4/3 \)

(Roughgarden & Tardos 2000)

(Roughgarden 2002)

- Pigou’s and Braess’ examples are worst possible

Multiple Equilibria

with costs of: \(4 \quad 4M \quad \frac{4M}{1+M} \)

Worst UE can be unbounded!
Network with Capacities: Guarantees

Theorem. For any instance of a network with capacities with latencies in L, we have

$$C(\text{BUE}) \leq \alpha(L) C(\text{SO})$$

In particular, if latencies are linear, $C(\text{BUE}) \leq \frac{4}{3} C(\text{SO})$

Proof (for the Linear Case)

- Assume $t_a(f_a) = q_a f_a + r_a$ for all a and let $f = \text{BUE}$

Convex Optimization Review

- Let z be a continuously differentiable and convex function on a convex set.
- Then x^* is a global minimum of z iff
 - the gradient along all feasible directions is non-negative

Beckmann UE

- **Space of UE** non-convex: Difficult to get **Best UE**
- Instead, **Beckmann UE (BUE)** is
 $$\min \sum_{a \in A} \int_0^{f_a} t_a(x)dx$$
 subject to f feasible flow
 capacity constraints

- Opt. Cond. **BUE**: g feasible direction $\Rightarrow \sum_a g_a t_a(f_a) \geq 0$

Beckmann UE is an Equilibrium

Lemma. f is a BUE $\Rightarrow f$ is a UE

Proof:

- Suppose f is not a UE $\Rightarrow \exists$ two paths P, Q s.t. flow can be re-routed from P to Q and $t_P(f) > t_Q(f)$
- P and Q define a circulation g which is a feasible direction
- $\sum_a g_a t_a(f_a) < 0 \Rightarrow f$ is not a BUE

But **BUE** is not necessarily the best equilibrium

Networks with Capacities
Non-convexity of UE

![Diagram showing non-convexity of UE](image)

Proof (for the Linear Case)

- Assume \(t_a(f_a) = q_a f_a + r_a \) for all \(a \) and let \(f = \text{BUE} \)
- Let \(C^L(x) = \sum_a x_a t_a(f_a) \)
- For all flows \(x \): \(C(f) \leq C^L(x) \)
 (same as \(\sum_a (x_a - f_a) t_a(f_a) \geq 0 \), the condition for \(\text{BUE} \))

Best vs. Beckmann

- The \(\text{BUE} \) does not need to be **best UE**:

![Diagram comparing BUE vs. best UE](image)

\(C(\text{BUE}) = 7 \) and \(C(\text{best UE}) = C(\text{SO}) = 6.875 \)

Proof (for the Linear Case)

- Assume \(t_a(f_a) = q_a f_a + r_a \) for all \(a \) and let \(f = \text{BUE} \)
- Let \(C^L(x) = \sum_a x_a t_a(f_a) \)
- For all flows \(x \): \(C(f) \leq C^L(x) \)
 (same as \(\sum_a (x_a - f_a) t_a(f_a) \geq 0 \), the condition for \(\text{BUE} \))
- \(C^L(x) = \sum_a x_a (q_a f_a + r_a) \leq \sum_a x_a (q_a x_a + r_a) + \frac{1}{4} \sum_a f_a^2 q_a \)
 because \((x - f/2)^2 \geq 0 \)

Review

<table>
<thead>
<tr>
<th>No capacities</th>
<th>With capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE unique</td>
<td>Set of UE may be non-convex</td>
</tr>
<tr>
<td>UE/SO \geq \alpha(\mathcal{L})</td>
<td>UE/SO unbounded</td>
</tr>
<tr>
<td>UE/SO \leq \alpha(\mathcal{L})</td>
<td>BUE/SO \leq \alpha(\mathcal{L})</td>
</tr>
</tbody>
</table>

Proof (for the Linear Case)

- Assume \(t_a(f_a) = q_a f_a + r_a \) for all \(a \) and let \(f = \text{BUE} \)
- Let \(C^L(x) = \sum_a x_a t_a(f_a) \)
- For all flows \(x \): \(C(f) \leq C^L(x) \)
 (same as \(\sum_a (x_a - f_a) t_a(f_a) \geq 0 \), the condition for \(\text{BUE} \))
- \(C^L(x) = \sum_a x_a (q_a f_a + r_a) \leq \sum_a x_a (q_a x_a + r_a) + \frac{1}{4} \sum_a f_a^2 q_a \)
 because \((x - f/2)^2 \geq 0 \)
- Last, \(\sum_a x_a (q_a x_a + r_a) + \frac{1}{4} \sum_a f_a^2 q_a \leq C(x) + \frac{1}{4} C(f) \)
 \[\Rightarrow \quad \frac{1}{4} C(f) \leq C(x) \]