Critical Concepts

- Industry Overview
- Valuation
- Valuation of Discount Bonds
- Valuation of Coupon Bonds
- Measures of Interest-Rate Risk
- Corporate Bonds and Default Risk
- The Sub-Prime Crisis

Readings

- Brealey, Myers, and Allen Chapters 23–25
Industry Overview

Fixed-income securities are financial claims with promised cashflows of known fixed amount paid at fixed dates.

Classification of Fixed-Income Securities:

- Treasury Securities
  - U.S. Treasury securities (bills, notes, bonds)
  - Bunds, JGBs, U.K. Gilts
  - ...

- Federal Agency Securities
  - Securities issued by federal agencies (FHLB, FNMA $\ldots$)

- Corporate Securities
  - Commercial paper
  - Medium-term notes (MTNs)
  - Corporate bonds
  - ...

- Municipal Securities
- Mortgage-Backed Securities
- Derivatives (CDO's, CDS's, etc.)
Industry Overview

U.S. Bond Market Debt 2006 ($Billions)

- Municipal, 2,337.50, 9%
- Treasury, 4,283.80, 16%
- Mortgage-Related, 6,400.40, 24%
- Corporate, 5,209.70, 19%
- Federal Agency, 2,665.20, 10%
- Money Markets, 3,818.90, 14%
- Asset-Backed, 2,016.70, 8%
## Industry Overview

### Outstanding U.S. Bond Market Debt

<table>
<thead>
<tr>
<th></th>
<th>Municipal</th>
<th>Treasury</th>
<th>Mortgage Related</th>
<th>Corporate Debt</th>
<th>Federal Agency Securities</th>
<th>Money Markets</th>
<th>Asset-Backed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>1.261</td>
<td>3.666</td>
<td>2.486</td>
<td>2.126</td>
<td>925.8</td>
<td>1.393</td>
<td>365.4</td>
<td>12.226</td>
</tr>
<tr>
<td>1997</td>
<td>1.318</td>
<td>3.659</td>
<td>2.680</td>
<td>2.359</td>
<td>1.021</td>
<td>1.692</td>
<td>553.8</td>
<td>13.267</td>
</tr>
<tr>
<td>1998</td>
<td>1.402</td>
<td>3.542</td>
<td>2.955</td>
<td>2.708</td>
<td>1.302</td>
<td>1.977</td>
<td>731.5</td>
<td>14.620</td>
</tr>
<tr>
<td>2003</td>
<td>1.900</td>
<td>3.967</td>
<td>5.238</td>
<td>4.865</td>
<td>2.626</td>
<td>2.519</td>
<td>1.690</td>
<td>22.433</td>
</tr>
<tr>
<td>2006</td>
<td>2.403</td>
<td>4.872</td>
<td>8.635</td>
<td>5.344</td>
<td>2.651</td>
<td>4.008</td>
<td>2.130</td>
<td>30.046</td>
</tr>
<tr>
<td>2007</td>
<td>2.618</td>
<td>5.075</td>
<td>9.142</td>
<td>5.946</td>
<td>2.933</td>
<td>4.171</td>
<td>2.472</td>
<td>32.360</td>
</tr>
</tbody>
</table>

1 Interest bearing marketable public debt.
2 Includes GNMA, FNMA, and FHLMC mortgage-backed securities and CMOs, and CMBS, and private-label MBS/CMOs.
3 Includes commercial paper, bankers acceptances, and large time deposits.
4 Includes auto, credit card, home equity, manufacturing, student loans and other; CDOs of ABS are included.
5 Due to FAS 166/167 changes, the GSE debt category in the Federal Reserve is no longer our source for agency debt going forward from Q1 2010.
Contains agency debt of Fannie Mae, Freddie Mac, Farmer Mac, FHLM, the Farm Credit System, and federal budget agencies (e.g., TVA)

Sources: U.S. Department of Treasury, Federal Reserve System, Federal agencies, Dealogic, Thomson Reuters, Bloomberg, Loan Performance and SIFMA

Courtesy of SIFMA. Used with permission. The Securities Industry and Financial Markets Association (SIFMA) prepared this material for informational purposes only. SIFMA obtained this information from multiple sources believed to be reliable as of the date of publication; SIFMA, however, makes no representations as to the accuracy or completeness of such third party information. SIFMA has no obligation to update, modify or amend this information or to otherwise notify a reader thereof in the event that any such information becomes outdated, inaccurate, or incomplete.
Industry Overview

U.S. Bond Market Issuance 2006 ($Billions)

- Asset-Backed, 674.6, 16%
- Municipal, 265.3, 6%
- Federal Agency, 546.9, 13%
- Treasury, 599.8, 14%
- Corporate, 748.7, 17%
- Mortgage-Related, 1,475.30, 34%
### Industry Overview

#### Issuance in the U.S. Bond Markets

<table>
<thead>
<tr>
<th>USD Billions</th>
<th>Municipal</th>
<th>Treasury</th>
<th>Mortgage-Related</th>
<th>Corporate Debt</th>
<th>Federal Agency Securities</th>
<th>Asset-Backed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>185.2</td>
<td>612.4</td>
<td>492.6</td>
<td>343.7</td>
<td>277.9</td>
<td>168.4</td>
<td>2,080.2</td>
</tr>
<tr>
<td>1997</td>
<td>220.7</td>
<td>540.0</td>
<td>604.4</td>
<td>466.0</td>
<td>323.1</td>
<td>223.1</td>
<td>2,377.3</td>
</tr>
<tr>
<td>1998</td>
<td>286.8</td>
<td>438.4</td>
<td>1,143.9</td>
<td>610.7</td>
<td>596.4</td>
<td>286.6</td>
<td>3,362.7</td>
</tr>
<tr>
<td>1999</td>
<td>227.5</td>
<td>364.6</td>
<td>1,025.4</td>
<td>629.2</td>
<td>548.0</td>
<td>287.1</td>
<td>3,081.8</td>
</tr>
<tr>
<td>2000</td>
<td>200.8</td>
<td>312.4</td>
<td>684.4</td>
<td>587.5</td>
<td>446.6</td>
<td>281.5</td>
<td>2,513.2</td>
</tr>
<tr>
<td>2001</td>
<td>287.7</td>
<td>380.7</td>
<td>1,071.3</td>
<td>776.1</td>
<td>941.0</td>
<td>326.2</td>
<td>4,383.0</td>
</tr>
<tr>
<td>2002</td>
<td>357.5</td>
<td>571.6</td>
<td>2,249.2</td>
<td>636.7</td>
<td>1,041.5</td>
<td>373.9</td>
<td>5,230.4</td>
</tr>
<tr>
<td>2003</td>
<td>382.7</td>
<td>745.2</td>
<td>3,071.1</td>
<td>775.8</td>
<td>1,267.5</td>
<td>461.5</td>
<td>6,703.8</td>
</tr>
<tr>
<td>2004</td>
<td>359.8</td>
<td>853.3</td>
<td>1,779.0</td>
<td>780.7</td>
<td>881.8&lt;sup&gt;4&lt;/sup&gt;</td>
<td>651.5</td>
<td>4,424.3</td>
</tr>
<tr>
<td>2005</td>
<td>408.2</td>
<td>746.2</td>
<td>1,966.7</td>
<td>752.8</td>
<td>669.0</td>
<td>753.5</td>
<td>5,296.4</td>
</tr>
<tr>
<td>2006</td>
<td>386.5</td>
<td>788.5</td>
<td>1,987.8</td>
<td>1,058.9</td>
<td>747.3</td>
<td>753.9</td>
<td>5,722.9</td>
</tr>
<tr>
<td>2007</td>
<td>429.3</td>
<td>752.3</td>
<td>2,050.3</td>
<td>1,127.5</td>
<td>941.8</td>
<td>509.7</td>
<td>5,810.9</td>
</tr>
<tr>
<td>2008</td>
<td>389.5</td>
<td>1,037.3</td>
<td>1,344.1</td>
<td>707.2</td>
<td>984.5</td>
<td>139.5</td>
<td>4,692.1</td>
</tr>
<tr>
<td>2009</td>
<td>409.6</td>
<td>2,185.5</td>
<td>1,957.2</td>
<td>901.8</td>
<td>1,117.0</td>
<td>146.2</td>
<td>6,717.2</td>
</tr>
</tbody>
</table>

<sup>1</sup> Interest bearing marketable coupon public debt.

<sup>2</sup> Includes GNMA, FNMA, and FHLMC mortgage-backed securities and CMOs and private-label MBS/CMOs.

<sup>3</sup> Includes all non-convertible debt, MTNs and Yankee bonds, but excludes CDs and federal agency debt.

<sup>4</sup> Beginning with 2004, Sallie Mae has been excluded due to privatization.

Sources: U.S. Department of Treasury, Federal Agencies, Thomson Reuters.
### U.S. Bond Markets

#### Average Daily Trading Volume

<table>
<thead>
<tr>
<th></th>
<th>Municipal</th>
<th>Treasury</th>
<th>Agency MBS</th>
<th>Corporate Debt</th>
<th>Federal Agency Securities</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>1.1</td>
<td>203.7</td>
<td>38.1</td>
<td>-</td>
<td>31.1</td>
<td>274.0</td>
</tr>
<tr>
<td>1997</td>
<td>1.1</td>
<td>212.1</td>
<td>47.1</td>
<td>-</td>
<td>40.2</td>
<td>300.5</td>
</tr>
<tr>
<td>1998</td>
<td>3.3</td>
<td>226.6</td>
<td>70.9</td>
<td>-</td>
<td>47.6</td>
<td>348.5</td>
</tr>
<tr>
<td>1999</td>
<td>8.3</td>
<td>186.5</td>
<td>67.1</td>
<td>-</td>
<td>54.5</td>
<td>316.5</td>
</tr>
<tr>
<td>2000</td>
<td>8.8</td>
<td>206.5</td>
<td>69.5</td>
<td>-</td>
<td>72.8</td>
<td>357.6</td>
</tr>
<tr>
<td>2001</td>
<td>8.8</td>
<td>297.9</td>
<td>112.0</td>
<td>-</td>
<td>90.2</td>
<td>508.9</td>
</tr>
<tr>
<td>2002</td>
<td>10.7</td>
<td>366.4</td>
<td>154.5</td>
<td>16.3</td>
<td>81.8</td>
<td>629.7</td>
</tr>
<tr>
<td>2003</td>
<td>12.6</td>
<td>433.5</td>
<td>206.0</td>
<td>18.0</td>
<td>81.7</td>
<td>751.8</td>
</tr>
<tr>
<td>2004</td>
<td>14.8</td>
<td>499.0</td>
<td>207.4</td>
<td>18.8</td>
<td>78.8</td>
<td>818.9</td>
</tr>
<tr>
<td>2005</td>
<td>16.9</td>
<td>554.5</td>
<td>251.8</td>
<td>16.7</td>
<td>78.8</td>
<td>918.7</td>
</tr>
<tr>
<td>2006</td>
<td>22.5</td>
<td>524.7</td>
<td>254.6</td>
<td>16.9</td>
<td>74.4</td>
<td>893.1</td>
</tr>
<tr>
<td>2007</td>
<td>25.1</td>
<td>570.2</td>
<td>320.1</td>
<td>16.4</td>
<td>83.0</td>
<td>1,014.9</td>
</tr>
<tr>
<td>2008</td>
<td>19.4</td>
<td>553.1</td>
<td>344.9</td>
<td>11.8</td>
<td>104.5</td>
<td>1,033.6</td>
</tr>
<tr>
<td>2009</td>
<td>12.5</td>
<td>407.9</td>
<td>299.9</td>
<td>16.8</td>
<td>77.7</td>
<td>814.6</td>
</tr>
</tbody>
</table>

1 Primary dealer activity
2 Excludes all issues with maturities of one year or less and convertible securities
3 Totals may not add due to rounding

Sources: Federal Reserve Bank of New York, Municipal Securities Rulemaking Board, FINRA

---

© 2007–2008 by Andrew W. Lo
Fixed-Income Market Participants

**Issuers:**
- Governments
- Corporations
- Commercial Banks
- States
- Municipalities
- SPVs
- Foreign Institutions

**Intermediaries:**
- Primary Dealers
- Other Dealers
- Investment Banks
- Credit-rating Agencies
- Credit Enhancers
- Liquidity Enhancers

**Investors:**
- Governments
- Pension Funds
- Insurance Companies
- Commercial Banks
- Mutual Funds
- Hedge Funds
- Foreign Institutions
- Individuals
Valuation

Cashflow:
- Maturity
- Coupon
- Principal

Example. A 3-year bond with principal of $1,000 and annual coupon payment of 5% has the following cashflow:

\[
\begin{align*}
50 & \quad 50 & \quad 50 + 1,000 \\
\end{align*}
\]

\[
\begin{align*}
t = 0 & \quad 1 & \quad 2 & \quad 3 \quad \text{time}
\end{align*}
\]
Components of Valuation

- Time value of principal and coupons
- Risks
  - Inflation
  - Credit
  - Timing (callability)
  - Liquidity
  - Currency

For Now, Consider Riskless Debt Only

- U.S. government debt (is it truly riskless?)
- Consider risky debt later
Valuation of Discount Bonds

Pure Discount Bond
- No coupons, single payment of principal at maturity
- Bond trades at a “discount” to face value
- Also known as zero-coupon bonds or STRIPS*
- Valuation is straightforward application of NPV

\[ P_0 = \frac{F}{(1 + r)^T} \]

- Note: \((P_0, r, F)\) is “over-determined”; given two, the third is determined

Now What If \(r\) Varies Over Time?
- Different interest rates from one year to the next
- Denote by \(r_t\) the spot rate of interest in year \(t\)

*Separate Trading of Registered Interest and Principal Securities
Valuation of Discount Bonds

If $r$ Varies Over Time

- Denote by $R_t$ the **one-year spot rate of interest** in year $t$

\[
P_0 = \frac{F}{(1 + R_1)(1 + R_2) \cdots (1 + R_T)}
\]

- But we don’t observe the entire sequence of future spot rates today!

\[
P_0 = \frac{F}{(1 + R_1)(1 + R_2) \cdots (1 + R_T)} = \frac{F}{(1 + r_{0,T})^T}, \quad r_{0,T} \equiv \text{Today's } T\text{-Year Spot Rate}
\]

- Today’s **$T$-year spot rate** is an “average” of one-year future spot rates
- $(P_0, F, r_{0,T})$ is over-determined
Valuation of Discount Bonds

Example:
On 20010801, STRIPS are traded at the following prices:

<table>
<thead>
<tr>
<th>Maturity (year)</th>
<th>1/4</th>
<th>1/2</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>0.991</td>
<td>0.983</td>
<td>0.967</td>
<td>0.927</td>
<td>0.797</td>
<td>0.605</td>
<td>0.187</td>
</tr>
</tbody>
</table>

For the 5-year STRIPS, we have

\[
0.797 = \frac{1}{(1 + r_{0.5})^5} \Rightarrow r_{0.5} = \frac{1}{(0.797)^{1/5}} - 1 = 4.64\%
\]
Valuation of Discount Bonds

Suppose We Observe Several Discount Bond Prices Today

\[ P_{0,1} = \frac{F}{(1 + R_1)} \rightarrow r_{0,1} \]

\[ P_{0,2} = \frac{F}{(1 + R_1)(1 + R_2)} \rightarrow r_{0,2} \]

\[ P_{0,3} = \frac{F}{(1 + R_1)(1 + R_2)(1 + R_3)} \rightarrow r_{0,3} \]

\[ \vdots \]

\[ P_{0,T} = \frac{F}{(1 + R_1)(1 + R_2)(1 + R_3) \cdots (1 + R_T)} \rightarrow r_{0,T} \]

\[ \{ P_{0,1}, P_{0,2}, \ldots, P_{0,T} \} \rightarrow \{ r_{0,1}, r_{0,2}, \ldots, r_{0,T} \} \]

Term Structure of Interest Rates
Valuation of Discount Bonds

Term Structure Contain Information About Future Interest Rates

- What are the implications of each of the two term structures?
Valuation of Discount Bonds

Term Structure Contain Information About Future Interest Rates

\[
P_{0,1} = \frac{F}{1 + R_1}
\]

\[
P_{0,2} = \frac{F}{(1 + R_1)(1 + R_2)}
\]

\[
\frac{P_{0,1}}{P_{0,2}} = \frac{F}{(1 + R_1)} \left( \frac{1 + R_1}{F} \right) = (1 + R_2)
\]

- Implicit in current bond prices are forecasts of future spot rates!
- These current forecasts are called one-year forward rates
- To distinguish them from spot rates, we use new notation:

\[
\frac{P_{0,t-1}}{P_{0,t}} = 1 + f_t = \frac{(1 + r_{o,t})^t}{(1 + r_{o,t-1})^{t-1}}
\]
Valuation of Discount Bonds

Term Structure Contain Information About Future Interest Rates

![Diagram showing spot and forward rates with labels for r_{0,1}, r_{0,2}, r_{0,3}, r_{0,4}, f_1, f_2, f_3, f_4, f_5, and 1, 2, 3, 4, 5 Maturity.]

© 2007–2008 by Andrew W. Lo
Valuation of Discount Bonds

More Generally:

- **Forward interest rates** are today’s rates for transactions between two future dates, for instance, $t_1$ and $t_2$.
- For a forward transaction to borrow money in the future:
  - Terms of transaction is agreed on today, $t = 0$
  - Loan is received on a future date $t_1$
  - Repayment of the loan occurs on date $t_2$
- Note: future spot rates can be (and usually are) different from current corresponding forward rates
Valuation of Discount Bonds

Example:

As the CFO of a U.S. multinational, you expect to repatriate $10MM from a foreign subsidiary in one year, which will be used to pay dividends one year afterwards. Not knowing the interest rates in one year, you would like to lock into a lending rate one year from now for a period of one year. What should you do? The current interest rates are:

\[
\begin{array}{c|cc}
 t & 1 & 2 \\
 r_{0,t} & 0.05 & 0.07 \\
\end{array}
\]

Strategy:
- Borrow $9.524MM now for one year at 5%
- Invest the proceeds $9.524MM for two years at 7%
Example (cont):

Outcome (in millions of dollars):

<table>
<thead>
<tr>
<th>Position</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Yr Borrowing</td>
<td>9.524</td>
<td>-10.000</td>
<td>0</td>
</tr>
<tr>
<td>2-Yr Lending</td>
<td>-9.524</td>
<td>0</td>
<td>10.904</td>
</tr>
<tr>
<td>Repatriation</td>
<td>0</td>
<td>10.000</td>
<td>0</td>
</tr>
<tr>
<td>Net</td>
<td>0</td>
<td>0</td>
<td>10.904</td>
</tr>
</tbody>
</table>

- The locked-in 1-year lending rate one year from now is 9.04%, which is the one-year forward rate for Year 2
Example:

Suppose that discount bond prices are as follows:

<table>
<thead>
<tr>
<th>$t$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_t$</td>
<td>0.9524</td>
<td>0.8900</td>
<td>0.8278</td>
<td>0.7629</td>
</tr>
<tr>
<td>$r_{0, t}$</td>
<td>0.05</td>
<td>0.06</td>
<td>0.065</td>
<td>0.07</td>
</tr>
</tbody>
</table>

A customer would like to have a forward contract to borrow $20$MM three years from now for one year. Can you (a bank) quote a rate for this forward loan?

All you need is the forward rate $f_4$ which should be your quote for the forward loan

\[
f_4 = \frac{(1 + r_{0,4})^4}{(1 + r_{0,3})^3} - 1 = \frac{(1.07)^4}{(1.065)^3} - 1 = 8.51\%
\]
Valuation of Discount Bonds

Example (cont):

Strategy:

- Buy 20,000,000 of 3 year discount bonds, costing
  \[(20,000,000)(0.8278) = 16,556,000\]

- Finance this by (short)selling 4 year discount bonds of amount
  \[16,556,000/0.7629 = 21,701,403\]

- This creates a liability in year 4 in the amount $21,701,403

- Aside: A **shortsales** is a particular financial transaction in which an individual can sell a security that s/he does not own by borrowing the security from another party, selling it and receiving the proceeds, and then buying back the security and returning it to the original owner at a later date, possibly with a capital gain or loss.
**Valuation of Discount Bonds**

**Example (cont):**
- Cashflows from this strategy (in million dollars):

<table>
<thead>
<tr>
<th>Position</th>
<th>Year 0</th>
<th>Years 1–2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long 3-Year Bond</td>
<td>-16.556</td>
<td>0</td>
<td>20.000</td>
<td>0</td>
</tr>
<tr>
<td>Short 4-Year Bond</td>
<td>16.556</td>
<td>0</td>
<td>0</td>
<td>-21.701</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>20.000</td>
<td>-21.701</td>
</tr>
</tbody>
</table>

- The yield for this strategy or “synthetic bond return” is given by:

\[
\frac{21,701,403}{20,000,000} - 1 = 8.51\%
\]
Valuation of Coupon Bonds

**Coupon Bonds**
- Intermediate payments in addition to final principal payment
- Coupon bonds can trade at discounts or premiums to face value
- Valuation is straightforward application of NPV (how?)

**Example:**
- 3-year bond of $1,000 par value with 5% coupon

\[
\begin{align*}
50 & \quad 50 & \quad 50 + 1,000 \\
1 & \quad 2 & \quad 3 & \quad \text{time}
\end{align*}
\]
Valuation of Coupon Bonds

Valuation of Coupon Bonds

\[ P_0 = \frac{C}{(1 + R_1)} + \frac{C}{(1 + R_1)(1 + R_2)} + \cdots + \frac{C + F}{(1 + R_1) \cdots (1 + R_T)} \]

- Since future spot rates are unobservable, summarize them with \( y \)

\[ P_0 = \frac{C}{(1 + y)} + \frac{C}{(1 + y)^2} + \cdots + \frac{C + F}{(1 + y)^T} \]

- \( y \) is called the **yield-to-maturity** of a bond
- It is a complex average of all future spot rates
- There is usually no closed-form solution for \( y \); numerical methods must be used to compute it (\( T^{th} \)-degree polynomial)
- \((P_0, y, C)\) is over-determined; any two determines the third
- For pure discount bonds, the YTM’s are the current spot rates
- Graph of coupon-bond \( y \) against maturities is called the **yield curve**
Valuation of Coupon Bonds

U.S. Treasury Yield Curves

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Start End</th>
<th>Maturity (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>Start</td>
<td>19830601</td>
<td>19830601</td>
</tr>
<tr>
<td></td>
<td>20040322</td>
<td>20040322</td>
</tr>
<tr>
<td>Mean</td>
<td>5.36</td>
<td>5.56</td>
</tr>
<tr>
<td>SD</td>
<td>2.29</td>
<td>2.37</td>
</tr>
<tr>
<td>Max</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>Median</td>
<td>5.31</td>
<td>5.51</td>
</tr>
<tr>
<td>Min</td>
<td>11.15</td>
<td>11.59</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.31</td>
<td>-0.22</td>
</tr>
<tr>
<td>$\rho_1$</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>20040322</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>20030324</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>20020322</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>20010322</td>
<td>4.25</td>
</tr>
<tr>
<td></td>
<td>20000322</td>
<td>5.92</td>
</tr>
</tbody>
</table>

Source: Bloomberg
Valuation of Coupon Bonds

Time Series of U.S. Treasury Security Yields

© 2007–2008 by Andrew W. Lo

Lectures 4–6: Fixed-Income Securities
Valuation of Coupon Bonds

![Graph showing yield vs maturity for different coupon bonds](image)
Valuation of Coupon Bonds

Models of the Term Structure

- Expectations Hypothesis
- Liquidity Preference
- Preferred Habitat
- Market Segmentation
- Continuous-Time Models
  - Vasicek, Cox-Ingersoll-Ross, Heath-Jarrow-Morton

Expectations Hypothesis

- Expected Future Spot = Current Forward

\[
E_0[R_k] = f_k
\]
Valuation of Coupon Bonds

Liquidity Preference Model

- Investors prefer liquidity
- Long-term borrowing requires a premium
- Expected future spot < current forward

\[ E[R_k] < f_k \]
\[ E[R_k] = f_k - \text{Liquidity Premium} \]
Another Valuation Method for Coupon Bonds

- Theorem: All coupon bonds are portfolios of pure discount bonds
- Valuation of discount bonds implies valuation of coupon bonds
- Proof?

Example:
- 3-Year 5% bond
- Sum of the following discount bonds:
  - 50 1-Year STRIPS
  - 50 2-Year STRIPS
  - 1050 3-Year STRIPS
Example (cont):
- Price of 3-Year coupon bond must equal the cost of this portfolio
- What if it does not?

In General:

\[ P = CP_{0,1} + CP_{0,2} + \cdots + (C + F)P_{O,T} \]

- If this relation is violated, **arbitrage opportunities** exist
- For example, suppose that

\[ P > CP_{0,1} + CP_{0,2} + \cdots + (C + F)P_{O,T} \]

- Short the coupon bond, buy \( C \) discount bonds of all maturities up to \( T \) and \( F \) discount bonds of maturity \( T \)
- No risk, positive profits \( \Rightarrow \) arbitrage
What About Multiple Coupon Bonds?

\[
\begin{align*}
P_1 &= C_{11} P_{0,1} + C_{12} P_{0,2} + \cdots + C_{1T} P_{0,T} \\
P_2 &= C_{21} P_{0,1} + C_{22} P_{0,2} + \cdots + C_{2T} P_{0,T} \\
\vdots \\
P_n &= C_{n1} P_{0,1} + C_{n2} P_{0,2} + \cdots + C_{nT} P_{0,T}
\end{align*}
\]

- Suppose \( n \) is much bigger than \( T \) (more bonds than maturity dates)
- This system is over-determined: \( T \) unknowns, \( n \) linear equations
- What happens if a solution does not exist?
- This is the basis for **fixed-income arbitrage** strategies
Measures of Interest-Rate Risk

Bonds Subject To Interest-Rate Risk

- As interest rates change, bond prices also change
- Sensitivity of price to changes in yield measures risk

![Graph showing the relationship between bond price and yield]
Measures of Interest-Rate Risk

Macaulay Duration

- Weighted average term to maturity

\[
D_m = \sum_{k=1}^{T} k \cdot \omega_k = \frac{1}{\sum_{k=1}^{q} \omega_k}
\]

\[
\omega_k = \frac{C_k/(1+y)^k}{P} = \frac{\text{PV}(C_k)}{P}
\]

- Sensitivity of bond prices to yield changes

\[
P = \sum_{k=1}^{T} \frac{C_k}{(1+y)^k}
\]

\[
\frac{\partial P}{\partial y} = -\frac{1}{1+y} \sum_{k=1}^{T} k \cdot \frac{C_k}{(1+y)^k}
\]

\[
1 \frac{\partial P}{P \, \partial y} = -\frac{D_m}{1+y}
\]

\[
= -D_m^* \quad \text{Modified Duration}
\]
Measures of Interest-Rate Risk

Example:

Consider a 4-year T-note with face value $100 and 7% coupon, selling at $103.50, yielding 6%.

- For T-notes, coupons are paid semi-annually. Using 6-month intervals, the coupon rate is 3.5% and the yield is 3%.

<table>
<thead>
<tr>
<th>$t$</th>
<th>$CF_t$</th>
<th>PV($CF_t$)</th>
<th>$t \cdot PV(CF_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.5</td>
<td>3.40</td>
<td>3.40</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>3.30</td>
<td>6.60</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.20</td>
<td>9.60</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>3.11</td>
<td>12.44</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>3.02</td>
<td>15.10</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td>2.93</td>
<td>17.59</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>2.85</td>
<td>19.92</td>
</tr>
<tr>
<td>8</td>
<td>103.5</td>
<td>81.70</td>
<td>653.63</td>
</tr>
<tr>
<td></td>
<td>103.50</td>
<td>738.28</td>
<td></td>
</tr>
</tbody>
</table>
Measures of Interest-Rate Risk

Example (cont):

- Duration (in 1/2 year units) is

\[
D = \frac{(738.28)}{103.50} = 7.13
\]

- Modified duration (volatility) is

\[
D^* = \frac{D}{1 + y} = \frac{7.13}{1.03} = 6.92
\]

- Price risk at y=0.03 is

\[
\Delta = D^* \times P = (6.92)(103.5) = 716
\]

- Note: If the yield moves up by 0.1%, the bond price decreases by 0.6860%
Measures of Interest-Rate Risk

Macaulay Duration

- Duration decreases with coupon rate
- Duration decreases with YTM
- Duration usually increases with maturity
  - For bonds selling at par or at a premium, duration always increases with maturity
  - For deep discount bonds, duration can decrease with maturity
  - Empirically, duration usually increases with maturity
Measures of Interest-Rate Risk

Macaulay Duration
- For intra-year coupons and annual yield $y$

Annual $D_m = \sum_{k=1}^{T} k \cdot \omega_k / q$

Annual $D_m^* = \frac{\text{Annual } D_m}{1 + \frac{y}{q}}$

Convexity
- Sensitivity of duration to yield changes

\[
\frac{\partial^2 P}{\partial y^2} = \frac{1}{(1 + y)^2} \sum_{k=1}^{T} k \cdot (k + 1) \cdot \frac{C_k}{(1 + y)^k}
\]

\[
\frac{1}{P} \frac{\partial^2 P}{\partial y^2} = V_m
\]
Measures of Interest-Rate Risk

- Relation between duration and convexity:

\[ P(y') \approx P(y) + \frac{\partial P}{\partial y}(y) \cdot (y' - y) + \frac{\partial^2 P}{\partial y^2}(y) \cdot \frac{(y' - y)^2}{2} \]

\[ = P(y) \cdot \left[ 1 - D^*_m(y' - y) + \frac{1}{2} V_m(y' - y)^2 \right] \]

- Second-order approximation to bond-price function

- Portfolio versions:

\[ P = \sum_j P_j \]

\[ D^*_m(P) \equiv - \frac{1}{P} \frac{\partial P}{\partial y} = \sum_j \frac{P_j}{P} D^*_{m,j} \]

\[ V^*_m(P) \equiv - \frac{1}{P} \frac{\partial^2 P}{\partial y^2} = \sum_j \frac{P_j}{P} V^*_{m,j} \]
Measures of Interest-Rate Risk

Numerical Example For Duration and Convexity
6% 4-Year Bond, Yield-to-Maturity = 6%, P=100

<table>
<thead>
<tr>
<th>k</th>
<th>C_k</th>
<th>( \frac{C_k}{(1+\frac{0.06}{2})^k} )</th>
<th>( \frac{kC_k}{2P(1+\frac{0.06}{2})^k} )</th>
<th>( \frac{k(k+1)C_k}{4P(1+\frac{0.06}{2})^k} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.912621</td>
<td>0.014563</td>
<td>0.014563</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.827787</td>
<td>0.028277</td>
<td>0.042416</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.745424</td>
<td>0.041181</td>
<td>0.082362</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2.665461</td>
<td>0.053309</td>
<td>0.133273</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2.587826</td>
<td>0.064695</td>
<td>0.194086</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2.512452</td>
<td>0.075373</td>
<td>0.263807</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2.439274</td>
<td>0.085374</td>
<td>0.341498</td>
</tr>
<tr>
<td>8</td>
<td>103</td>
<td>81.309151</td>
<td>3.252366</td>
<td>14.635647</td>
</tr>
</tbody>
</table>
Measures of Interest-Rate Risk

\[ D_m^* = \frac{1}{1 + \frac{0.06}{2}} \sum_{k=1}^{8} \frac{kC_k}{2P(1 + \frac{0.06}{2})^k} = 3.509846 \]

\[ V_m = \frac{1}{(1 + \frac{0.06}{2})^2} \sum_{k=1}^{8} \frac{k(k+1)C_k}{4P(1 + \frac{0.06}{2})^k} = 14.805972 \]

\[ P(y') \approx P(0.06) \left( 1 - 3.509846(y' - 0.06) + 14.805972 \frac{(y' - 0.06)^2}{2} \right) \]

\[ P(0.08) \approx P(0.06)(1 - 0.0701969 + 0.0029611) \approx 93.276427 \]

\[ P(0.08) = 93.267255 \]
Corporate Bonds and Default Risk

Non-Government Bonds Carry Default Risk

- A default is when a debt issuer fails to make a promised payment (interest or principal)
- Credit ratings by rating agencies (e.g., Moody's and S&P) provide indications of the likelihood of default by each issuer.

<table>
<thead>
<tr>
<th>Credit Risk</th>
<th>Moody’s</th>
<th>S&amp;P</th>
<th>Fitch</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investment Grade</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Quality</td>
<td>Aaa</td>
<td>AAA</td>
<td>AAA</td>
</tr>
<tr>
<td>High Quality (Very Strong)</td>
<td>Aa</td>
<td>AA</td>
<td>AA</td>
</tr>
<tr>
<td>Upper Medium Grade (Strong)</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Medium Grade</td>
<td>Baa</td>
<td>BBB</td>
<td>BBB</td>
</tr>
<tr>
<td><strong>Not Investment Grade</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat Speculative</td>
<td>Ba</td>
<td>BB</td>
<td>BB</td>
</tr>
<tr>
<td>Speculative</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Highly Speculative</td>
<td>Caa</td>
<td>CCC</td>
<td>CCC</td>
</tr>
<tr>
<td>Most Speculative</td>
<td>Ca</td>
<td>CC</td>
<td>CC</td>
</tr>
<tr>
<td>Imminent Default</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Default</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
Corporate Bonds and Default Risk

Moody’s Baa—10-Year Treasury Yield

Source: Fung and Hsieh (2007)
Corporate Bonds and Default Risk

What’s In The Premium?

- Expected default loss, tax premium, systematic risk premium (Elton, et al 2001)
  - 17.8% contribution from default on 10-year A-rated industrials
- Default, recovery, tax, jumps, liquidity, and market factors (Delianedis and Geske, 2001)
  - 5-22% contribution from default
- Credit risk, illiquidity, call and conversion features, asymmetric tax treatments of corporates and Treasuries (Huang and Huang 2002)
  - 20-30% contribution from credit risk
- Liquidity premium, carrying costs, taxes, or simply pricing errors (Saunders and Allen 2002)
Corporate Bonds and Default Risk

Decomposition of Corporate Bond Yields

- **Promised YTM** is the yield if default does not occur
- **Expected YTM** is the probability-weighted average of all possible yields
- **Default premium** is the difference between promised yield and expected yield
- **Risk premium** (of a bond) is the difference between the expected yield on a risky bond and the yield on a risk-free bond of similar maturity and coupon rate

**Example:** Suppose all bonds have par value $1,000 and
- 10-year Treasury STRIPS is selling at $463.19, yielding 8%
- 10-year zero issued by XYZ Inc. is selling at $321.97
- Expected payoff from XYZ's 10-year zero is $762.22
Corporate Bonds and Default Risk

- For the 10-year zero issued by XYZ:

\[
\text{Promised YTM} = \left( \frac{1000.00}{321.97} \right)^{1/10} - 1 = 12\%
\]

\[
\text{Expected YTM} = \left( \frac{762.22}{321.97} \right)^{1/10} - 1 = 9\%
\]

\[
\text{Default Premium} = \text{Promised YTM} - \text{Expected YTM}
\]

\[
= 12\% - 9\% = 3\%
\]

\[
\text{Risk Premium} = \text{Expected YTM} - \text{Default-free YTM}
\]

\[
= 9\% - 8\% = 1\%
\]
Decomposition of Corporate Bond Yields

Yield Spread

- Default Premium
  - 12% - Promised YTM
- Risk Premium
  - 9% - Expected YTM
- Default-Free Rate
  - 8% - Default-Free YTM
The Sub-Prime Crisis

Why Securitize Loans?
- Repack risks to yield more homogeneity within categories
- More efficient allocation of risk
- Creates more risk-bearing capacity
- Provides greater transparency
- Supports economic growth
- Benefits of sub-prime market

But Successful Securitization Requires:
- Diversification
- Accurate risk measurement
- “Normal” market conditions
- Reasonably sophisticated investors
“Confessions of a Risk Manager” in *The Economist*, August 7, 2008:

Like most banks we owned a portfolio of different tranches of collateralised-debt obligations (CDOs), which are packages of asset-backed securities. Our business and risk strategy was to buy pools of assets, mainly bonds; warehouse them on our own balance-sheet and structure them into CDOs; and finally distribute them to end investors. **We were most eager to sell the non-investment-grade tranches, and our risk approvals were conditional on reducing these to zero.** We would allow positions of the top-rated AAA and super-senior (even better than AAA) tranches to be held on our own balance-sheet as the default risk was deemed to be well protected by all the lower tranches, which would have to absorb any prior losses.
“Confessions of a Risk Manager” in The Economist, August 7, 2008:

In May 2005 we held AAA tranches, expecting them to rise in value, and sold non-investment-grade tranches, expecting them to go down. From a risk-management point of view, this was perfect: have a long position in the low-risk asset, and a short one in the higher-risk one. But the reverse happened of what we had expected: AAA tranches went down in price and non-investment-grade tranches went up, resulting in losses as we marked the positions to market.

This was entirely counter-intuitive. Explanations of why this had happened were confusing and focused on complicated cross-correlations between tranches. In essence it turned out that there had been a short squeeze in non-investment-grade tranches, driving their prices up, and a general selling of all more senior structured tranches, even the very best AAA ones.
An Illustrative Example

Consider Simple Securitization Example:
- Two identical one-period loans, face value $1,000
- Loans are risky; they can default with prob. 10%
- Consider packing them into a portfolio
- Issue two new claims on this portfolio, S and J
- Let S have different (higher) priority than J
- What are the properties of S and J?
- What have we accomplished with this “innovation”?

Let’s Look At The Numbers!
An Illustrative Example

Price = 90% × $1,000 + 10% × $0 = $900

Price = 90% × $1,000 + 10% × $0 = $900
An Illustrative Example

Assuming Independent Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>81%</td>
</tr>
<tr>
<td>$1,000</td>
<td>18%</td>
</tr>
<tr>
<td>$0</td>
<td>1%</td>
</tr>
</tbody>
</table>
An Illustrative Example

Portfolio

Senior Tranche

Junior Tranche
An Illustrative Example

Assuming Independent Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
<th>Senior Tranche</th>
<th>Junior Tranche</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>81%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>$1,000</td>
<td>18%</td>
<td>$1,000</td>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
<td>1%</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Bad State For Senior Tranche (1%)
Bad State For Junior Tranche (19%)
An Illustrative Example

5-, 10-, 15- and 20-Year Average Cumulative Default Rates, 1920-1999

Correlation Between Ratings and Default Risk Holds for Holding Periods up to 20 Years

Source: Moody’s
### Assuming Independent Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
<th>Senior Tranche</th>
<th>Junior Tranche</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>81%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>$1,000</td>
<td>18%</td>
<td>$1,000</td>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
<td>1%</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Price for Senior Tranche = \(0.99 \times 1,000 + 0.01 \times 0\) = $990

Price for Junior Tranche = \(0.81 \times 1,000 + 0.19 \times 0\) = $810
An Illustrative Example

Assuming Independent Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
<th>Senior Tranche</th>
<th>Junior Tranche</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>81%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>$1,000</td>
<td>18%</td>
<td>$1,000</td>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
<td>1%</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

But What If Defaults Become Highly Correlated?
### An Illustrative Example

#### Assuming Perfectly Correlated Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
<th>Senior Tranche</th>
<th>Junior Tranche</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>90%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>$0</td>
<td>10%</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

**Bad State For Senior Tranche (10%)**

**Bad State For Junior Tranche (10%)**
An Illustrative Example

Assuming Perfectly Correlated Defaults

<table>
<thead>
<tr>
<th>Portfolio Value</th>
<th>Prob.</th>
<th>Senior Tranche</th>
<th>Junior Tranche</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td>90%</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>$0</td>
<td>10%</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Price for Senior Tranche = \( 90\% \times $1,000 + 10\% \times $0 \) = $900 (was $990)

Price for Junior Tranche = \( 90\% \times $1,000 + 10\% \times $0 \) = $900 (was $810)
Implications

To This Basic Story, Add:
- Very low default rates (new securities)
- Very low correlation of defaults (initially)
- Aaa for senior tranche (almost riskless)
- Demand for senior tranche (pension funds)
- Demand for junior tranche (hedge funds)
- Fees for origination, rating, leverage, etc.
- Insurance (monoline, CDS, etc.)
- Equity bear market, FANNIE, FREDDIE

Then, National Real-Estate Market Declines
- Default correlation rises
- Senior tranche declines
- Junior tranche increases
- Ratings decline
- Unwind ⇒ Losses ⇒ Unwind ⇒ ...
Key Points

- Valuation of riskless pure discount bonds using NPV tools
- Coupon bonds can be priced from discount bonds via arbitrage
- Current bond prices contain information about future interest rates
- Spot rates, forward rates, yield-to-maturity, yield curve
- Interest-rate risk can be measured by duration and convexity
- Corporate bonds contain other sources of risk
Additional References

15.401 Finance Theory I
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.