EXHALE OLD

NEW NEW INHALE

吐 OLD 纳

NEW
Characteristics
Multiple scales of pipes create elevated material circulation systems. These pipes...
Production Process of Shougang
Production Process of Shougang
Different Zone

- Electricity Plant
- Raw Material Processing
- Power Factory
Power Flow Within Site
Material Processes Within Site
Use existing infrastructure to create connections between recreation areas. The Shougang site becomes a bridge connecting a missing link in the chain of recreation.

Within this network, the power generation site can be reimagined as an interface between portions of the trail.
Existing Woody Paths

Paths along railroad tracks and paths between buildings could knit into a larger network of trails throughout the area.
Existing Transportation Infrastructure

Existing railroad tracks and track beds can be reused as either light rail, bike or foot traffic through the site, tying into transportation systems from outside the site.
Existing Transportation Infrastructure

Existing railroad tracks and track beds can be reused as either light rail, bike or foot traffic through the site, tying into transportation systems from outside the site.
Potential Water Uses

Water could be used as a public space amenity.

Or it could be used for irrigation, evaporative cooling or gray water.

Use existing rail infrastructure as space for new canals and stream beds.

Cooling towers, detention ponds, and coal pits can be repurposed as local water features.
Yongding River

Water Transfer Project

Mother river of Beijing

Decreased flow because of upstream challenges:
- Guanting Reservoir - 1954
- High Sediment
- Irrigation
- Decrease in Precipitation
- Lowered water table

South-North Water Transfer Project: $62.5 billion plan to move 50 billion cubic meters of water via three new diversion projects from the Yangtze River to the North China Plain

<table>
<thead>
<tr>
<th>Areas benefiting</th>
<th>EASTERN</th>
<th>MIDDLE</th>
<th>WESTERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiangsu</td>
<td>Shandong</td>
<td>Henan</td>
<td>Gansu</td>
</tr>
<tr>
<td>Shandong</td>
<td>Hebei</td>
<td>Hebei</td>
<td>Ningxia</td>
</tr>
<tr>
<td>Hebei</td>
<td>Beijing</td>
<td>Tianjin</td>
<td>Inner Mongolia</td>
</tr>
<tr>
<td>Tianjin</td>
<td></td>
<td></td>
<td>Shaanxi</td>
</tr>
</tbody>
</table>

Vol. of Water Taken	19bn m3	n/g	n/g
Volume delivered	14bn m3	14bn m3	20bn m3
Length (km)	1,130 km	1,236 km	320 km
Capital Cost (1995)	Yn20bn	Yn40bn	n/g
Cost per M3 Water (1998)	< Yn5	Yn5	Yn10
Long Narrow Strip
As an Integrated System

Characteristics

High density system comprised of large scale structures with sheltered interior spaces.

Multiple scales of pipe create elevated material circulation systems.

Pipes create a second ground unifying the entire site.

Structured vegetation used to reinforce edges

Ground transportation systems vary in scale and purpose: Vehicular, train, pedestrian paths
Zone 1
Co-generation Plant

Characteristics:

Series of steel and concrete structures and elevated conveyers devoted to energy generation

Tallest structure in zone, smoke stack, creates a connection between adjacent cooling towers and mountain

Small amount of structured green space

Large interior courtyards

Vehicular transportation forms 3 edges, while train transportation and river form the western edge
Zone 1
Co-generation Plant

Seven steel structures
Larger structure with concrete frame and steel roof
Most in good condition
Zone 1
Co-generation Plant
Views of mountain and cooling towers