Stock-Taking
Methodology, Outcomes, Lessons and Beyond

11.332J
October 28, 2003
Presentation outline

• Overall approach
• Combined product
• Summary of individual approaches
• Lessons learned
 – Session mechanics
 – Urban design process
 – Site-specific
• Issues to resolve
Combined product

Inputs
- Previous assumptions
- Ethical principles
- Individual schemes
- Numerical targets
- Stakeholder concerns

Approach
1. Session #1: Challenging assumptions
2. Session #2: Frameworks for decision-making
3. Session #3: Interference workshop
4. Session #4: If “x” then “y”
5. Session #5: Stakeholder bargaining

Outputs
- Validated assumptions
- Decision-making rules
- Consolidated schemes
- Design propositions
- Common visions

Combined product
Approach 1: challenging assumptions
Approach 1: challenging assumptions

Process

1. State assumption
2. Determine implications upon form
3. Reverse assumption
4. Determine implications upon form
5. Accept or reject original assumption
Approach 1: challenging assumptions

Sample outcomes

<table>
<thead>
<tr>
<th>Assumption</th>
<th>MIT’s undergraduate student population will remain at roughly its current levels</th>
</tr>
</thead>
</table>
| Implications | - Amount of undergrad housing is definable and stable
- Could be shifted if FSILGs change
- Even with no change, good students will come to MIT |
| Counter-assumption | The size of MIT’s undergrad population will change substantially |
| Implications | - Less demand for undergrad housing
- Possibly empty buildings
- Less faculty
- Less TAs
- Less tuition $ |
| Resolution | Assumption holds |
Approach 1: challenging assumptions
Sample outcomes

<table>
<thead>
<tr>
<th>Assumption</th>
<th>To meet its future athletic needs, MIT will require an amount of playing fields equal to or greater than its current facilities</th>
</tr>
</thead>
</table>
| Implications | • Any development on current fields will spur a need for new fields
• Potential for shared facilities (BU, neighborhood, etc.)
• Pressure/tendency for MIT to build out, rather than in
• Potential to use current fields more intensively
• Difficult to connect ends of campus or build community |
| Counter-assumption | Could get by with less fields |
| Implications | • Loss of large space and its versatility
• Greater potential to connect campus and build community
• More room for development for MIT (chance to densify) |
| Resolution | Challenge assumption |
Approach 1: challenging assumptions

Sample outcomes

<table>
<thead>
<tr>
<th>Assumption</th>
<th>The urban ring will come to Cambridge by 2020</th>
</tr>
</thead>
</table>
| Implications | • Retail activity becomes much more economically feasible (near Ft. Washington)
• Densities near Ft. Washington increase
• Land values go up -> zoning changes
• Stealing business from Central Sq. (?) through competitive alternative
• New stakeholder group: region/commuters |
| Counter-assumption | No urban ring |
| Implications | • If MIT expands, it will have to provide services (recreation, dining, etc.)
• Increased demand for parking will lead to increases in congestion
• Difficulty to get enough density to support much retail |
| Resolution | Develop interventions that will work with or without urban ring |
Approach 2: frameworks for decision-making
Approach 2: goals

- Establishing a set of frameworks (sets of rules or guidelines) to guide design options and land use proposals
- Exploring how broader strategic and ethical concerns could take a central role in the formation of local strategies
- Finding a way to turn abstract goals into spatially specific strategies
- Identifying areas where further research is needed to back up positions or test frameworks

Stakeholder:

+ community
+ place
+ city metabolism
+ environment/sustainability
Approach 2: process

<table>
<thead>
<tr>
<th>Identify issues requiring strategic steer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(where concerns of local stakeholders or planned development pattern appears to conflict with broader concerns for public benefit, sustainability or city metabolism)</td>
</tr>
</tbody>
</table>

| Establish possible raw positions for each issue |

| Test these positions against ethical principles and take forward most favourable position |

| Develop and refine a strategy framework for each issue, expressed as a clear set of guidelines - where, how much, under what circumstance |

| Map out strategy frameworks in real space |
Housing density

- Raw position: raise average housing density
- Location framework below
- Other possible elements of strategy:
 - Design guidelines
 - Numerical limits for minimax densities

High density housing would be allowed in accessible areas of special urban character where it could be designed not to disrupt that character.

High density housing only within 10 minute walk catchment of public transport.

10 minute walk catchment.

No housing in non-housing areas (greenspace, some MIT academic areas, business space clusters - indicative boundaries)
Affordable housing

* Raw position: double current proportion of affordable housing
* Potential areas for including affordable housing on MIT and non-MIT land shown below
* Other possible elements of strategy:
 - recommended mechanisms for achieving affordable housing
 - numerical targets
 - definition of scales of affordability (currently 80% ami)
 - separate affordability criteria for MIT rented housing
 - design guidelines

Potential for housing if change of use was thought to be acceptable

New housing only in areas accessible by public transport

Non MIT-owned land with housing potential

MIT-owned land with housing potential

Areas with better potential for non-MIT affordable housing

Location of non-MIT affordable housing near student housing potentially undesirable - look for areas where this could be resolved and identify places where non-MIT housing should be discounted
Parking

- Possible raw positions: maintain same allowances or reduce allowances.
- Framework would be dependent on:
 - Nature and extent of new development
 - Potential to reduce all parking allowances when Urban Ring in place
 - Potential to reduce MIT student parking allowances (currently 10% total)
 - Whether proximity to central MIT is a decisive factor for visitor parking or staff and faculty commuter parking
 - Appropriate maximum walk distance from parking to residential and business uses
 - Under what circumstances and in which locations surface parking is acceptable or desirable

Key:
- Surface parking lots
- Stacked parking
- 3 minute walk distance to central MIT
- 6 minute walk distance to central MIT
- Cambridgeport residential area
Local businesses and industry

- Raw position: maintain land currently occupied by Cambridge-serving businesses
- Framework for location and amount of business/industrial land would depend on:
 - strategic importance of this area in relation to location and amount of business/industrial land in Cambridge (it's currently roughly 12% of total)
 - assessment of number of vehicle trips generated if businesses displaced
 - assessment of value of local businesses to community - employment and services
 - location of land parcels directly bounded by current and proposed truck routes
 - projections for growth of technology and biotech companies and importance of proximity to MIT or main streets
 - number of potential housing units lost

Key
- current technology or biotech building
- current other industrial use
- current MIT workspace or service building
- existing truck route
- proposed truck route
- land accessible from truck routes
- land recently rezoned as housing only
- land zoned as housing where current uses allowed
Approach 3: the “interference workshop”
A two-point source interference pattern creates an alternating pattern of bright and dark lines when it is projected onto a screen.
Our Previous Proposals—Five Schemes
Approach 3: The “Interference” Workshop

Themes & Propositions

Scheme A
Overlap & Interference

Scheme B
Overlap & Interference

1. Shuffle
2. Split
3. Themes & Propositions
4. Themes & Propositions
5. Themes & Propositions
Approach 3: Outcomes

The “Goldfish Exercise”

Team 1: Form-Driven Propositions

- Sunken R.R. greenway with “town square” nodes
- Continue “wall of dorms” along Vassar St.
- Iconic architecture and more gathering spaces
- Strengthen MIT-Cambridgeport connections
- Extend two or three C’port Streets to Vassar St.
- Underground parking and pedestrian tunnels
- Network of pedestrian greenways connecting open spaces
- Build on Brigg’s but redistribute fields elsewhere

Team 1: Programmatic Goals

- More Office, Biotech, Start-up & Swing Space
- Improve K-12 Education in Cambridge
- MIT spaces and buildings must be shared with Cambridgeport residents and local businesses
- If not building housing, develop non-MIT “soft-institutional” spaces (such as Synagogues, Churches, Community Pool, etc.) on properties near to Cambridgeport residents

Team 2: Form-Driven Propositions

- “Commonwealth Ave”
- “Celebrate” the Gateway to Boston
- Parking beneath Brigg’s with above ground links to MIT and C’port
- Inviting pedestrian connections to River
- Extend Infinite Corridor to Fort Washington
- Create “street walls” along Mass Ave, with better street-level activity.

Integrate architecture with landscape in order to extend playing field landscape into C’port, make physical connections (especially around F.W.), and create public spaces.

Team 2: Programmatic Goals

- Concentrate MIT institutional development on Mass Ave.
- Develop in a way that preserves Cambridgeport businesses
- Locate housing around Ft. Washington & along Vassar St.
- Wide range of housing types for a wide range of potential occupants
Approach 3: The “Interference” Workshop
Process – The “Goldfish Exercise”

1. Interference
2. Interference
3. Overlap &
4. Overlap &
5. Themes &

Scheme A

Scheme B

Themes & Propositions
Approach 3: The “Interference” Workshop
Revised Process –Two Schemes Consolidating All Propositions (Friday, Oct 17, 2003)
Approach 3: Outcomes

Scheme A

Scheme B
Also: Reconfigure area around Westgate by building more housing around central open space and making traffic connections between Memorial Drive and Cambridgeport.

Trends in Both Schemes:
Concentrate Development along (1) Mass Ave. (2) along parts of Albany St., (3) along Vassar St., (4) immediately adjacent to Ft. Washington, and (5) around Ford Plant.
Main Distinctions:
Team One develops with larger grain and higher density, whereas Team Two develops with smaller grains and loose interstitial spaces.

Team One concentrates development around Ft. Washington, attempting to create an activity node, whereas Team Two spreads outwardly and reinforces what is already there.
Approach 3: Lessons learned

• Lessons about our site
 – The site is inherently flexible—It easily accommodated the merged propositions/goals of 5 different schemes without producing much “interference” (both constructive and destructive) between them.
 – There is quite a wide variety of street configurations, open-space patterns and development schemes still to be generated and discussed.

• Lessons about methodology
 – If the aim is to generate novel solutions by merging different schemes, it is best to merge schemes that are fundamentally at odds, otherwise one simply finds overlap that does not take one in a new and interesting direction.
 – Nonetheless, two different end schemes based on the same inputs and requirements produce results that are comparatively revealing, and can highlight new subconscious assumptions.

• If I could do it again…
 – For interest, I would merge schemes that are antagonistic to one another.
 – I would impose more rules and limits (hard requirements) on the game in order to instigate a bargaining process between the different interest-holders of different schemes.
Approach IV: “If x then y”
Multiple Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Housing</td>
<td>100 units</td>
</tr>
<tr>
<td>Graduate Housing</td>
<td>1000 units</td>
</tr>
<tr>
<td>Faculty Housing</td>
<td>100 units</td>
</tr>
<tr>
<td>FSILG</td>
<td>450 beds</td>
</tr>
<tr>
<td>Biotech/Startup/Incubator</td>
<td>200k ft²</td>
</tr>
<tr>
<td>Student/Performance Center</td>
<td>~ Walker</td>
</tr>
<tr>
<td>Tennis Center</td>
<td>6 in/ 6 out</td>
</tr>
</tbody>
</table>
Multiple Sites
Iterative Process

Family Housing
Graduate Housing
Faculty Housing
FSILG
Biotech/Startup
Performance Center
Tennis Center

Family Housing
Graduate Housing
Faculty Housing
FSILG
Biotech/Startup
Performance Center
Tennis Center

Team 1
Team 2
Team 3
Approach 5: stakeholder bargaining
Approach 5: Stakeholder Bargaining

1. MIT Leadership
2. MIT Students
3. MIT Employees
4. Cambridgeport Residents
5. City of Cambridge
6. Biotech/Industry
7. Children

Step 1: List stakeholder satisfactions (++) and concerns (--) with plans.

Step 2: Bargaining and brainstorming

Step 3: Bargaining and brainstorming (repeated)
Approach 5: Outcomes

Problem #1: Unsafe areas for children

Design Solutions:
- Provide spaces for teens to hang out
 - Commercial nodes
 - Stoops
- Eliminate blind corners
- Provide sufficient lighting

Programmatic solutions:
- Police (MIT or City of Cambridge?)
- Activity after 5pm
- Saferide or similar program
- Investigate University Park model

Specific to Traffic and Trucks:
- Streetscape / Traffic calming
- Locate high use streets near biotech and office uses
Approach 5: Outcomes

Problem #2: Wall of dormitories

Solutions:

• Shift dorms to the Northeast
• Orient dorms at 90 degrees to Simmons Hall
• Configure dorms in orientation with courtyards
• Quad(s) on playing fields with programmed field in center court
Approach 5: Outcomes

Problem #3: Field Usage

• Came from previous discussion of dormitory wall

Solutions:

• Structure space with paths, lines, buildings, and trees

• Structure amongst scattered sites (quads)

• Student-run space – don’t change it
Approach 5: Outcomes

Problem #4: Fort Washington Area

- Came from decision to focus more on spatial areas

Solutions:

- PUD with use contingencies
- Vertex future: contingency, tolerance

Dealing with uncertainty:

- Build to highest degree of use freedom (adaptable architecture)
- But also build to highest certainty for public realm
Approach 5: Lessons learned

Site lessons
- Stakeholder groups not geographically or programmatically bounded
- Playing field structure
 - Should the fields be structured?
 - Through addition of buildings or chalked lines?
- Orientation of large structures may be as problematic as size
- Importance of contingency planning

Methodology lessons
- Incomplete knowledge of stakeholder groups’ value system
- Difficult to bargain using broad issues
- Each solution generated more points of discussion
Approach 5: Future Attempts

Because issue focus was too broad –

• Use finer-grain issues specific to a location

 or

• Work purely with site-specific focus

• Add additional constraints
 ➢ Facilitates creativity

• Explicitly state types of goals desired
Lessons learned

Session mechanics

• You can always use more time

• An overly forced structure is better than no structure

• Explicit goals/constraints streamline the process

• Discussion ↑, efficiency ↓

• People are happier when they’re eating
Lessons learned
Urban design process

• No solution is ever complete; they all generate more problems (and solutions)

• Complex problems don’t always require complex solutions

• Urban design problems don’t always require design solutions

• Tight constraints can often generate novel solutions
Lessons learned

Site-specific

• MIT’s goals could be accomplished within a relatively small built footprint

• Planning without a master plan can lead to an incoherent whole

• Established uses (e.g., the fields) are often difficult to supplant

• Bold proposals may suggest new ways to view the site
Issues to resolve

• What form should the final product take?
 – What would be best received?
 – What is most likely to have a real impact?
 – How much planning and how much architecture?
 – Place-based or program-based (or a combination of both)?

• How best to divide and conquer (given individual skills)?

• What comes next?