Urban Transportation, Land Use, and the Environment in Latin America: A Case Study Approach

Lecture 11:
The Santiago Metropolitan Area
Transport System: Brief History

- Horse trams and steam trains (to San Bernardo and Puente Alto) by turn of Century
- By 1930s, city has one of most extensive electric tram networks in South America
 - 220 kms, 210 passengers/year
 - Dismantling begun in 1945
- By 1960s (first land regulatory plan)
 - Plans also laid for Metro system
 - Construction begun on ring road (Vespucio), Avenida Kennedy (East to Las Condes) and the PanAmerican Highway
Policy Context

Urban Policy

- Strongly influenced at national level
 - Specific policy interests fluctuating in time with politics
- 1993 policy-formulation process recs:
 - **Goals:** decentralization; environment and quality of life; equity in access to goods and services; economic growth and modernization; more a balanced distribution of population and economic activity across the country (CED, et al., 1994).
 - **Measures:** capacity building; institutional improvement; strengthened role of local governments (Municipalities); improvement in regional planning instruments and processes; improvements in urban information systems; internalization of external costs, promoting the use of non-motorized transportation and shorter trips, densification and mixing of land uses, “sub-centers”)
 - “Ideal” rhetoric, but, nothing formal still written…policy vacuum prevails
Policy Context

Urban Transport Policy
- Strongly influenced at national level
 - For long time, an ad hoc amalgam of activities at different government levels
- Santiago reaches crisis by the 1970s, early 1980s SECTU, later SECTRA, is born
 - Develops, formalizes evaluation techniques, data collection, etc.
 - Technical, demand- and system-management perspective (engineering approach); little consideration to land use alternatives as management option
- No formal “policy” exists, “rational” rhetoric disarticulated by different apparent “schools of thought” prevailing among institutions
 - The “infrastructure camp” v/s the “management camp”
 - Ultimately determined by who has the money?
Today’s Transport Modes & Infrastructure

- Cars, Buses (*Micros*), Trucks Taxis, fixed route taxis (*colectivos*), Metro, Suburban Rail, Walk, Bike
- Approx. 4,700 kms of roadways
 - Plus, Vespucio Ring Road and the Pan American Highway
- Two Segregated Busways
 - 5 km segment and ~10 km stretch
- Differentiated and (in city center) segregated bus stops
- 3 Metro Lines: 40 kms, 51 stations, 68 trains, built at $1.6 billion (US$1999)
- Suburban Rail: 9 stations, 85 kms south to Rancagua
NMT Facilities

- Wide sidewalks and well-signaled pedestrian facilities increasingly common (especially in heavy commercial areas)
- Few bicycle facilities
Major Recent Projects in Greater Santiago

- Upgrade of Ring Road (Vespucio) in North, Northwest
- Overpass/underpass on Kennedy Highway to the East (Las Condes)
- Major Road upgrades in Southeastern suburbs
- Completion of Metro Line 5 to city center
Major Recent Projects in RM

- Completion of Route 78 (*Autopista del Sol*) to Port of San Antonio
- Upgrade of Route 57 north to Los Andes (road to Argentina)
- Upgrade of Route 68 west to Valparaiso
System Management

- **UOCT (Operative Traffic Control Unit)**
 - Traffic Light Operations (1600 intersections)
 - 80% on pre-established timing (traffic-count based); 16% dynamic control (SCOOT); 4% sensor-activated

- One-way streets during peak periods

- **La Restricción** – vehicle restriction, similar to *Hoy no Circula*, in place since late 1980s.
 - Odd-even scheme implemented during pollution months
 - Initially, aimed to reduce on-street fleet by 20%
 - In 1993, cars with catalysts exempted
 - Currently in force 4 March to 31 December
 - Includes private cars, trucks, school buses, taxis, buses & trucks (during off peak periods) w/out advanced pollution control techs.
 - Currently reduces approx. 8% of cars on any given day
 - With higher pollution days, can be expanded.
System Management

- Using pollution as a force for “immediate actions” March – December:
 - 9 “vias exclusivas” for public transport
 - During AM Peak (7:30 – 10:00)
 - Three additional lanes and PM Peak added during pollution episodes
 - “Reversible Lanes” for Private Transport
 - Primarily during AM peak
Bus System History

- **1970s: Strong state intervention**
 - Private operators, but all key variables (frequency, routes, fares) under government control
- **1979-1982: Complete deregulation**
 - Part of government neo-liberal reforms
 - Fares, routes, operations
 - Problems already evidenced
- **1982-1988: Partial re-regulation**
 - Over routes (particularly in the center city) and vehicle age
- **1988: Complete deregulation, again**
 - Only controls over vehicle quality via inspections
Bus System by 1990

Results are in

- **Positives:** Supply and service area expansion, frequency increase
 - 1978-1985: Bus and Minibus fleet grew 50% and 75% (respectively)
- **Negatives:** Decline in occupancy rates (50%), cartel control of fares and entry (self-regulating “mafia”), old vehicles, poor maintenance, devastating public image (in face of motorization)
 - By 1991: 13,500 vehicles, average age of 14 years
 - Bus oversupply estimated at 4,000 vehicles, consuming $24.4 million per year in excess fuel, 10% excess of PM emissions
 - 10-fold increase in bus fare relative to minimum family wage (77-87)
Early 1990s: The Process of Bus System Reform

The Early 1990s – process of reform

- Purchase of oldest vehicles on street
 - 2,600 vehicles at cost of $14 million
- 18-year old age limit established
 - Implying further retirement of 2,000 vehicles (91-94)
- Emissions standards
 - From 1990 to 94: Permitted exhaust opacity levels, 32% ⇒ 9%
 - 1993: all new engines, EPA-91
 - 1996: EPA-94
1990 – The Legal Foundation

- Concessioning (public bidding) of routes where congestion, pollution, and/or safety concerns exist

- Service Terminals (Os and Ds) established
- Routes outside “regulated area” are flexible
- Route and frequency criteria must be met within the “regulated area”

Source: Dourthe et al., 2000.
Concession Basis

- **Routes and Frequencies** – Bid must present a fleet consistent with these requirements
- **Vehicle Age** – lower average age, greater points
 - 10-year limit for traditional buses; 14-year-old limit for buses meeting EPA standard
- **Vehicle Capacity** – higher avg. capacity, more points
- **Formalization of the operators** – with clearly defined legal representative
- **Fares** – in bid, operator chooses from four possible fares, lower far, greater points
 - A formula for fare increases set: a weighted sum that includes the variation in fuel, tire, labor, US & Brazilian exchange rate & other costs (adjustment indices come from independent agency – INE)
Concession Stages

1992 – 36 month term
- Automatically extendable if certain conditions met, re: vehicle technology and driver remuneration

1998 – 60 month term
- With automatic 6 month extension by Ministry possible
- Additional incentives to improve quality of service
 - Operators meeting a minimum percentage of fleet with EPA technology, with automatic transmission, A/C, and minimum fleet % using CNG had right to:
 - increase fare by 10% after 1st year,
 - in the fourth year, extend by an additional five years the term of the concession
- Due to the variation in demand (peak, off-peak, holidays, vacation periods) – allow predetermined frequency adjustments
- Authority maintains right to alter service requirements based on demand changes over time
Results

- **“Regulated Area” now 270 km²**
- **Reduction and modernization of the fleet**
 - 2000: 9,000 vehicles, avg. age 4
 - Investment of US$ 500 million by private sector
- **Improved Service Quality**
 - Travel times (despite slightly increased wait time), comfort, cleanliness, safety, uniformity of service and information
- **Pollution. > one-half buses comply with EPA-91/94**
- **Modernization of buses operators**
- **Fare Stabilization and De-politicization**
 - Fares remained roughly constant since 1991 (~US$0.30)
Evolution in Bus Fares

Note: Concessioned buses entered into service at the end of 1991. For the years, 1993, 94, 95, 96 the values are annual average (fare varied during the year).

Source: Dourthe et al., 2000.
Bus Concessions: Some Comments

- Fare Reductions: Actually began before concession contracts in place (10/92)
- Current & Future competition?
 - Higher technical requirements (vehicles) imply fewer potential operators
 - 1998, 97% (280 routes) bid maximum fare: CH$190
 - 76% bid for just one route (return of collusion?)
 - Competition or price setting by Ministry?
- Despite reduced bus fleet size, still apparent excess capacity
 - particularly during certain times of day, on certain routes
- Safety, Security
 - Battle to implement new charging techniques (still unresolved)
 - Unable to change driver remuneration method
 - Still competition on the street
Passenger Travel Demand

1991 (last O-D survey)
- 8.4 million trips/day
- 2.12 trips/person
 - 1.91 in poorest HHs
 - 2.65 in wealthiest HHs

Trips by Purpose
- Work: 36%
- School: 32%
- Other: 32%
- Work and school predominate during peak periods; others constant across day

Fleet Growth Rates: 1986-1996
- Private Vehicles: 6%
- Taxis: 7.8%
- Buses: 1%
- Trucks 6%

Motorization Rate
- 1952: 14 private vehicles per 1000
- 1977: 60 private vehicles per 1000
- 2000: 129 private vehicles per 1000
- A.A. Growth 86-96: 4%
Wealth, Motorization, Mode Share

Motorization Rate & Income
- Kain & Liu (1994)
 - Income explains >90% of HH vehicle ownership
 - Income Elasticity: 1.06-1.16
 - % HH private vehicle ownership increases with Avg. HH income at elasticity of 0.82 ($r^2=70$)

Motorization Rate & Mode Share
- Kain & Liu (1994)
 - Auto ownership explains 96% of auto use
 - Elasticity of auto mode share to ownership of nearly 1.
- Zegras & Gakenheimer (2000) estimates suggest a short term elasticity of 0.80 and long term of 1.22
 - Suggesting that today’s auto mode share roughly 22%-24% of all trips
Motorization Rate, Mode Share, Trips – Growth in Time

<table>
<thead>
<tr>
<th></th>
<th>1977</th>
<th>1991</th>
<th>Annual Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autos/ 1000 Population</td>
<td>60</td>
<td>90</td>
<td>3%</td>
</tr>
<tr>
<td>Auto Mode share</td>
<td>9.8%</td>
<td>15.8%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Trips/Capita</td>
<td>1.14</td>
<td>2.13</td>
<td>4.4%</td>
</tr>
<tr>
<td>Motorized Trips/Capita</td>
<td>0.95</td>
<td>1.7</td>
<td>4.2%</td>
</tr>
</tbody>
</table>

Income, Motorization, Mode Share –
What Future the Bus?

Bus System – Ongoing Challenges

Specific to Private Sector Ownership-Operations

- On-Street competition for passengers
- Service and fare integration
 - Nearly all services run periphery to periphery
 - Often long, torturous routes, with duplication on dense corridors
- “Formalization” of the companies
 - Many traits of informal roots remain

Challenges to the System in General

- Service & fare differentiation
 - Marginal cost pricing possible?
 - Higher quality service for higher paying patrons?
- Travel & wait time
 - Bus trip times on average 70% longer than auto
- Overall public perception & status – what role public policy?

For how much longer will the private operators be viable?
Bus System, Suburbanization, Equity
The Metro: A Public Transport “Success Story”?

- Generally increasing ridership with supply expansion
- Does it offer “alternative to the car”?
 - Metro’s data shows that within “areas of influence” public transport mode share goes up to 76% (Metro 52%, bus 24%) (Metro, 2000)
 - At aggregate comuna level – controlling for auto ownership – public transport mode share positively correlates with Metro presence
 - $R^2 = 60\%$ (Zegras & Gakenheimer, 2000)
Since 1995, has recorded operating surpluses
- Incomes: fare, publicity, rent (locales in stations)
- Costs: personnel, energy, maintenance, depreciation

Uneven Line Utilization
- Peak demands on Line 1 approach 70% of system theoretical capacity (50,000 pax/hour/direction)
- Lines 2 and 5 less than 30%
- Remember Mexico City?
 - Similarly, 35% of system (Line 1) carries 70% of users
Line 1 “Success” – Land Use

- Seven stations with >25,000 entering pass./day
 - Line 2 reaches this level only at terminal stations
 - Line 5 only at southern terminal station

- Line’s 2 and 5 – cost savings measures (initial construction costs) reduce integration with urban fabric

- Great majority of Metro trips start and end as pedestrian trips (generally >65%)
Metro: Service Integration

Despite minimal service integration, buses and *colectivos* provide important peak feeder service
- 8-9 AM: 26% and 13%, respectively
- 6:30 – 10 PM: 23% and 16%, respectively

Integration terminals figure prominently in future expansion plans (so-called mini-extensions)
- Hope, in part, to attract private capital
 - As in case of Line 5 Terminal – Bellavista de la Florida
Bellavista de La Florida

Metro expropriated land for a Metrobus transfer station and then, via a concession, granted development rights to a supermarket chain.

- Company invested ~ US$3.7 million to develop the underground transfer station in return for the rights to use the surface above for 40 years.
Other Travel Modes

- ~3% (& growing) of trips are school bus trips
- *Colectivos* have increased from <2% in 1991 to 6% today
 - Distance-based fare, important services to lower density suburbs
- Walking accounts for 20% of trips
 - 33% of school trips; 20% of “other” trips
 - Average time: 16-19 minutes
 - Average distance ~1.5 kms
 - Implies lower total accessibility for the poor
- Despite favorable topography, climate bike use low (1.6% all trips)
 - A recent study (Ortuzar et al 1999) suggests a bike network of 3.2 km bikeways/km² would increase bike share to 6%
 - Primarily replacing bus trips
Transport, Land Use, Urban Form - Roads

- Anecdotally, road investments have played an important role in development
 - in east, southeast suburbs
 - Industries on west, northwest Ring Road
- Highways “cause” expansion?
 - Lo Barnechea (in East) began developing before major road infrastructure expansion
 - Developers lobbied for expansion, development subsequently accelerated
 - La Florida suburbanized before radial road upgrades
 - Chacabuco (Province directly to North) development currently constrained by lack of road infrastructure
Transport, Land Use, Urban Form - Metro

- Eastern portion of Line 1 coincided with urban transformation and densification (Providencia, Las Condes corridor)
 - But, no comparable results on poorer, western segment in east, southeast suburbs
- Line 2 criticized for not generating land effects
- Line 5 – too soon to judge?
 - Bellavista de La Florida mall already existed
- Kain & Liu (1994): Metro encourages suburbanization
 - But, only if Metro investments did not substitute for other urban transport investments
 - Seems that, actually, Metro did take away from other investments
 - Did Line 1 “plant the seeds of its own destruction” by reducing importance of CBD?
 - Ridership profile suggests opposite effects
Transport, Land Use, Urban Form

What role externalities?

– Air pollution, noise, accidents

Major traffic corridors, particularly running through the intermediate *comunas*

– Does the increased accessibility implied by this traffic more than offset than negative effects?
– Or, is it further fueling urban outgrowth?
Land Use, Urban Form, Transportation

- Predominant urban form of Greater Santiago (remember last week’s slides on land uses)
 - historical concentration of trip attractions in city center;
 - socio-economic segregation, which produces long work, school, and shopping trips from lower income neighborhoods to upper income neighborhoods
 - Better concentration of employment, shopping, education opportunities
 - functional segregation, which results in many, often long, trips
 - from less-equipped zones to those with greater diversity of land uses

- Jobs/Housing Balance (1991) (Kain & Liu, 1994)
 - 13 comunas 0.8-1.8; 19 comunas 0.2-0.7

- School/Housing Balance
 - Relative imbalance: school trips have been important transport policy focus
 - Linked to prestige, long-run social contact “externalities”
Land Use, Urban Form, Transportation

Recent Trends (as seen last week)

- The migration of the CBD
 - Providencia, Las Condes, Vitacura (East)
 - Huechuraba, Quilicura (North) and Pudahuel (West, near airport)

- The emergence of the “edge city”
 - Potential to reduce suburb-center city travel
 - Potential to increase suburb-suburb travel
Land Use, Urban Form, Transportation

- The Local factors (3 D’s)
 - Kain & Liu (1994) find little evidence of effects
 - Aggregate *comuna*-level data of density and mode share
 - Similar analysis at aggregate *comuna* level (Zegras & Gakenheimer, 2000)
 - Negative correlation between relative mix of land uses and walking
 - Implies that the poorer *comunas* (walking-dependent) have lower levels of overall accessibility

- More detailed, micro-level data required for more conclusive analysis
 - Rich area for future research….
Air Pollution

- RM in violation of standards
 - TSP, PM$_{10}$, Ozone, CO
- Risk of violation for NO$_2$
- Transport is principal source of PM$_{10}$, CO and virtually Ozone
 - Especially since ozone is apparently NOx-constrained
Transport and Air Pollution in RM

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>PM$_{10}$</th>
<th>CO</th>
<th>NOx</th>
<th>VOCs</th>
<th>SO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars and Light Trucks</td>
<td>1.5</td>
<td>72</td>
<td>34</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>Taxis</td>
<td>.1</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>.5</td>
</tr>
<tr>
<td>Trucks</td>
<td>2</td>
<td>8</td>
<td>20</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Buses</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>0</td>
<td>.3</td>
<td>0</td>
<td>.4</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicle Types</td>
<td>86*</td>
<td>92</td>
<td>71</td>
<td>46</td>
<td>15</td>
</tr>
</tbody>
</table>

* Includes Road Dust.
Source: CONAMA, 1998
AQ Management – History

- 1978 – first AQ norms
- 1988 – first monitoring stations
- 1990 – Special Commission for AQ established
- 1992 – first catalyst vehicles introduced
- 1994 – CONAMA created
 - national environment legislation passed
- 1996 – RM pollution violations “declared”
- 1997 – AQ management plan published
- 1997 – expansion of monitoring stations
- 1997 – development of first AQ prediction model
- 1998 – massive industrial conversion from diesel to natural gas
- 1998 – “emergency” levels revised, MC standards set
- 1998 – use of AQ model for formally anticipating episodes
- 2001 – introduction of “city diesel” (0.03% sulfur)
RM Air Pollution in an International Context

Number of Times Norm Exceeded in One Year

Note: Various years b/w 1995-98
RM Air Pollution in an International Context

Maximum Pollution Levels Reached

Note: Various years b/w 1995-98
RM Air Pollution in an International Context

US Cities & Santiago: Maximum CO Levels Reached

RM Air Pollution in an International Context

US Cities & Santiago: Maximum Ozone Levels Reached

RM Air Pollution in an International Context

US Cities & Santiago: Average PM$_{10}$ Levels: 1997-99

RM Air Pollution in an International Context

Percentage Contribution of Mobile Sources

Air Pollution Progress

First Half of 1990s (1989-95)

- **PM$_{10}$**
 - “emergency days” declined from 10 to 0
 - “pre-emergency” from 30 to 10

- **CO**
 - Days in violation declined by ½ to 56 in 1995

- **Ozone** – more persistent, considerably varied across region

1997-2000

- 1% reduction in ozone (still 45% from standard)
- 31% reduction in CO (still 35% from standard)
- 23% reduction in avg. PM$_{10}$ (still 35% from standard)
Episode Definition

Based on PM Concentration:
Index of Air Quality for Particulate Matter (ICAP)

<table>
<thead>
<tr>
<th>ICAP</th>
<th>Category ICAP</th>
<th>PM10 ug/m³ (24 hrs.)</th>
<th>Level</th>
<th>Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Good</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>101-200</td>
<td>100</td>
<td>150</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Regular</td>
<td>100</td>
<td>150</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>201-300</td>
<td>200</td>
<td>195</td>
<td>1</td>
<td>Alert</td>
</tr>
<tr>
<td>Bad</td>
<td>200</td>
<td>195</td>
<td>1</td>
<td>Alert</td>
</tr>
<tr>
<td>301-400</td>
<td>300</td>
<td>240</td>
<td>2</td>
<td>Pre-Emergency</td>
</tr>
<tr>
<td>Critical</td>
<td>300</td>
<td>240</td>
<td>2</td>
<td>Pre-Emergency</td>
</tr>
<tr>
<td>401-500</td>
<td>400</td>
<td>285</td>
<td>2</td>
<td>Pre-Emergency</td>
</tr>
<tr>
<td>Dangerous</td>
<td>400</td>
<td>285</td>
<td>2</td>
<td>Pre-Emergency</td>
</tr>
<tr>
<td>>501 Excede</td>
<td>400</td>
<td>330</td>
<td>3</td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PM$_{10}$ Concentrations – Average Annual

Source: www.conama.cl/rm
Recent History: Episodes

Annual Episodes

Monthly Distribution

Source: www.conama.cl/rm
T, L-U, Environment – Other Concerns

- **Land conversion** – loss of agricultural land, pressures on wetlands, loss of fragile foothills
 - Implications for erosion, flood control, species loss, micro-climate
- **Water pollution, depletion** – untreated residential and industrial sewage, nitrate deposition, groundwater depletion (esp. Chacabuco)
- **Noise pollution** – 80% of population living or working on principal arterials at risk of hearing loss (as of 1989)
 - 70% of residential, mixed use land inadequate for these uses due to noise
- **Solid waste disposal** – 80% of domestic waste makes it to landfills, but most industrial waste disposed illegally, waste growing 2% year
- **Open spaces** – less than 2.5% of urbanized area dedicated to open space (40% less than international norms)
The Public Intervention Space

- Finance
 - Taxes, transfers, subsidies, impact fees

- Planning Interventions
 - Urban and Regional Plans, Sectoral Plans

- Impact Studies
Public Finance

Central Government

- Still most important government level
 - 95% of all taxes collected
 - Major investor, redistributive role, rule-setting role for Municipal government revenue-raising
- Revenues: 60% from VAT and other consumption taxes; 30% through income taxes; 12% through customs duties
- Essentially neutral spatial effects
- Apparent RM subsidy to other regions (via transfers to Regional, Municipal governments)
Public Finance

Regional Government

- No revenue-raising capacity
- Fully dependent on transfers from Central Government
 - FNDR (Fondo de Desarrollo Regional)
 - Redistributitional
 - ISAR (Inversion Sectorial de Asignacion Regional)
 - Assigned to Ministry and Region, GoRe determines where to spend from Ministry-approved projects in roads, housing
 - IRAL (Inversion Sectorial de Asignacion Local)
 - To be funneled through regional governments to Municipalities
- In RM, 1993-97: FNDR+ISAR+IRAL = $140 million
 - FNDR(44%), ISAR (44%), IRAL (14%)
 - Heavier relative focus outside of Greater Santiago
- Ongoing plans to decentralize investment decision-making
 - But, as of 1998 regional funds account for just 8% of total public investments in RM
 - Furthermore, who really controls the ISAR?
Public Finance

Municipal Government

- Property Tax
 - Absent transfers, single largest source of local revenues (76%)
 - Collected by Central Government
 - Despite law, very infrequent re-appraisals
 - Slightly progressive structure

- Vehicle Registration Fees (*permiso de circulación*)
 - Buoyant
 - 1% to 4.5% of vehicle value
 - Even after transfers to FCM, important source of Municipal revenues – i.e., 20% in Providencia

- Business Licenses
 - Santiago, Providencia, Vitacura, Las Condes must contribute 55%-65% of fees to FCM

- FCM (*Fondo Común Municipal*) – redistributive mechanism
 - 60% property taxes, 50% vehicle registrations, other fees
 - Even after redistribution, riches comunas 8x income/capita than poorest
Public Finance

Transport Finance

- Road user revenues (Gas tax, registration fees) apparently more than cover expenditures
 - Apparent subsidy to Metro
 - Does not take into account external costs
- Much rhetoric, little movement on road-pricing
 - Legislation stalled in Congress
- Infrastructure concessions
 - PanAmerican Highway, Costanera Norte, Radial Nor-Oriente
- Metro
 - Infrastructure financed by Central Government
 - Operations covered by revenues
 - Some minimum private sector participation (Bellavista de La Florida), possibly increasing in future
Plans

- **PRDU (Regional Plan for Urban Development)**
 - A guiding instrument, created by Seremi-MINVU
 - Non-existent in practice

- **Inter-Comunal (PRMS), 1960, 1994, Modifications**
 - Created by Seremi-MINVU
 - General land use zoning, growth boundaries, densities, major infrastructure rights of way
 - 1994 Plan
 - Sets UGB, raises densities (city-wide to 150/hectare), specifies land use zones, establishes greenspaces, preservation zones, “sub” centers
 - Modified in 1997 to open up the Province of Chacabuco
Regional Plans - Comments

- Chacabuco Province
 - Plan adds 35% (19,000 has) to metro area’s current urban area
 - Province actually contains 190,000 has…..

- Do financial pressures/interests over-ride all plans?
 - Expose inherent conflicts/contradictions

- What about coordination with other plans (i.e., various transport plans, environment plans)

- What about the PRI being developed for the South of the RM?
The Growth Boundary

- In 1994 PRMS, modified in 1997 with Chacabuco
 - Enforced through provision of public infrastructure
- Existence too short to gauge true impacts on land markets
- Probably slowed growth that otherwise might have occurred
 - “bought time” for creation of other instruments
 - Lessened impact of the Law of Agricultural Parcels
- Future role: depends on future modifications