SES #  TOPICS  LECTURE NOTES  

Derivatives  
1  Derivatives, slope, velocity, rate of change  (PDF  1.1 MB)  Ses #17 complete (PDF  5.2 MB) 
2 
Limits, continuity Trigonometric limits 
(PDF  2.6 MB)  
3  Derivatives of products, quotients, sine, cosine  (PDF)  
4 
Chain rule Higher derivatives 
(PDF)  
5  Implicit differentiation, inverses  (PDF)  
6 
Exponential and log Logarithmic differentiation; hyperbolic functions 
(PDF)  
7  Exam 1 review  (PDF)  
8  Exam 1 covering Ses #17  (No Lecture Notes)  
Applications of Differentiation  
9  Linear and quadratic approximations  (PDF)  Ses #916 complete (PDF  6.9 MB) 
10  Curve sketching  (PDF  1.8 MB)  
11  Maxmin problems  (PDF  1.1 MB)  
12  Related rates  (PDF  1.0 MB)  
13  Newton’s method and other applications  (PDF  1.2 MB)  
14 
Mean value theorem Inequalities 
(PDF)  
15  Differentials, antiderivatives  (PDF)  
16  Differential equations, separation of variables  (PDF)  
17  Exam 2 covering Ses #816  (No Lecture Notes)  
Integration  
18  Definite integrals  (PDF)  Ses #1825 complete (PDF  8.6 MB) 
19  First fundamental theorem of calculus  (PDF)  
20  Second fundamental theorem  (PDF)  
21  Applications to logarithms and geometry  (PDF  1.4 MB)  
22  Volumes by disks and shells  (PDF  1.7 MB)  
23  Work, average value, probability  (PDF  2.2 MB)  
24  Numerical integration  (PDF  1.1 MB)  
25  Exam 3 review  (PDF)  
Techniques of Integration  
26  Trigonometric integrals and substitution  (PDF)  Ses #2638 complete (PDF  8.6 MB) 
27  Exam 3 covering Ses #1824  (No Lecture Notes)  
28  Integration by inverse substitution; completing the square  (PDF)  
29  Partial fractions  (PDF)  
30  Integration by parts, reduction formulae  (PDF  1.4 MB)  
31  Parametric equations, arclength, surface area  (PDF)  
32 
Polar coordinates; area in polar coordinates Exam 4 review 
(PDF) 

33  Exam 4 covering Ses #2632  (No Lecture Notes)  
34  Indeterminate forms  L’Hôspital’s rule  (PDF)  
35  Improper integrals  (PDF)  
36  Infinite series and convergence tests  (PDF  1.4 MB)  
37  Taylor’s series  (PDF)  
38  Final review  (PDF) 
Lecture Notes
Course Info
Learning Resource Types
assignment
Problem Sets
grading
Exams with Solutions
notes
Lecture Notes
theaters
Lecture Videos