LEC # | TOPICS | LECTURE NOTES |
---|---|---|
1 | Manifolds: Definitions and Examples | (PDF) |
2 |
Smooth Maps and the Notion of Equivalence
Standard Pathologies |
(PDF) |
3 | The Derivative of a Map between Vector Spaces | (PDF) |
4 | Inverse and Implicit Function Theorems | (PDF) |
5 | More Examples | (PDF) |
6 | Vector Bundles and the Differential: New Vector Bundles from Old | (PDF) |
7 | Vector Bundles and the Differential: The Tangent Bundle | (PDF) |
8 |
Connections
Partitions of Unity The Grassmanian is Universal |
(PDF) |
9 | The Embedding Manifolds in RN | (PDF) |
10-11 | Sard’s Theorem | (PDF) |
12 | Stratified Spaces | (PDF) |
13 | Fiber Bundles | (PDF) |
14 | Whitney’s Embedding Theorem, Medium Version | (PDF) |
15 |
A Brief Introduction to Linear Analysis: Basic Definitions
A Brief Introduction to Linear Analysis: Compact Operators |
(PDF) |
16-17 | A Brief Introduction to Linear Analysis: Fredholm Operators | (PDF) |
18-19 | Smale’s Sard Theorem | (PDF) |
20 | Parametric Transversality | (PDF) |
21-22 | The Strong Whitney Embedding Theorem | (PDF) |
23-28 | Morse Theory | (PDF) |
29 | Canonical Forms: The Lie Derivative | (PDF) |
30 |
Canonical Forms: The Frobenious Integrability Theorem
Canonical Forms: Foliations Characterizing a Codimension One Foliation in Terms of its Normal Vector The Holonomy of Closed Loop in a Leaf Reeb’s Stability Theorem |
(PDF) |
31 | Differential Forms and de Rham’s Theorem: The Exterior Algebra | (PDF) |
32 |
Differential Forms and de Rham’s Theorem: The Poincaré Lemma and Homotopy Invariance of the de Rham Cohomology
Cech Cohomology |
(PDF) |
33 | Refinement The Acyclicity of the Sheaf of p-forms | (PDF) |
34 | The Poincaré Lemma Implies the Equality of Cech Cohomology and de Rham Cohomology | (PDF) |
35 | The Immersion Theorem of Smale | (PDF) |
Lecture Notes
Course Info
Learning Resource Types
notes
Lecture Notes
assignment
Problem Sets