18.965 | Fall 2004 | Graduate

Geometry of Manifolds

Lecture Notes

LEC # TOPICS  LECTURE NOTES
1 Manifolds: Definitions and Examples (PDF)
2 Smooth Maps and the  Notion of Equivalence

Standard Pathologies

(PDF)
3 The Derivative of a Map between Vector Spaces (PDF)
4 Inverse and Implicit Function Theorems (PDF)
5 More Examples (PDF)
6 Vector Bundles and the Differential: New Vector Bundles from Old (PDF)
7 Vector Bundles and the Differential: The Tangent Bundle (PDF)
8 Connections

Partitions of Unity

The Grassmanian is Universal

(PDF)
9 The Embedding Manifolds in RN (PDF)
10-11 Sard’s Theorem (PDF)
12 Stratified Spaces (PDF)
13 Fiber Bundles (PDF)
14 Whitney’s Embedding Theorem, Medium Version (PDF)
15 A Brief Introduction to Linear Analysis: Basic Definitions

A Brief Introduction to Linear Analysis: Compact Operators 

(PDF)
16-17 A Brief Introduction to Linear Analysis: Fredholm Operators (PDF)
18-19 Smale’s Sard Theorem (PDF)
20 Parametric Transversality (PDF)
21-22 The Strong Whitney Embedding Theorem (PDF)
23-28 Morse Theory (PDF)
29 Canonical Forms: The Lie Derivative (PDF)
30 Canonical Forms: The Frobenious Integrability Theorem

Canonical Forms: Foliations

Characterizing a Codimension One Foliation in Terms of its Normal Vector

The Holonomy of Closed Loop in a Leaf

Reeb’s Stability Theorem

(PDF)
31 Differential Forms and de Rham’s Theorem: The Exterior Algebra (PDF)
32 Differential Forms and de Rham’s Theorem: The Poincaré Lemma and Homotopy Invariance of the de Rham Cohomology

Cech Cohomology

(PDF)
33 Refinement The Acyclicity of the Sheaf of p-forms (PDF)
34 The Poincaré Lemma Implies the Equality of Cech Cohomology and de Rham Cohomology (PDF)
35 The Immersion Theorem of Smale (PDF)

Course Info

Instructor
Departments
As Taught In
Fall 2004
Level
Learning Resource Types
Lecture Notes
Problem Sets