Organic Materials

29. Polymers: Synthesis, Properties & Applications

« Previous | Next »

Session Overview

Modules Organic Materials
Concepts polymer synthesis by addition and condensation, polymer structure-property relationships, social and culture implications of polymers
Keywords plastics, addition polymerization, radical, condensation polymerization, amide bond, carbonyl group, electrical insulator, thermoplastic, thermoset, crystallization zone, Wallace Carothers, glass transition temperature, recycling, design for environment (DFE)
Chemical Substances polyester, poly(ethylene terephthalate) (PET), silicone, nylon, polyurethane, norbornene, isoprene, Bakelite
Applications polypropylene in lithium ion batteries, soda bottles and fabrics, electrical insulators, recycling and packaging

Prerequisites

Before starting this session, you should be familiar with:

Looking Ahead

The next segment on biochemistry (Sessions 30 through 32) builds upon these introductory polymers sessions.

Learning Objectives

After completing this session, you should be able to:

  • Define, compare and contrast the two forms of polymer synthesis.
  • Summarize the key properties of polymers that determine their suitability for various applications.
  • Explain the relationship between polymer structure and material properties, for instance the effect of crystallization zones on strength and transparency.
  • Describe some factors that affect the recyclability of polymers.

Reading

Book Chapters Topics
[PB-OC] 28, “Synthetic Polymers.” Addition and condensation synthesis; addition (chain growth) and condensation (step growth) polymers; stereochemistry; dienes and rubber; copolymers; structure-property relationships
[JS] 13.1, “Polymerization.” Polymer form as it relates to synthesis; example of collagen
[JS] 13.2, “Structural Features of Polymers.” Polymer structure as it relates to synthesis; example of rubber vulcanization

Lecture Video

Lecture 29: Polymers: Synthesis, Properties & Applications

Resources

Lecture Slides (PDF - 3.0MB)

Lecture Summary

This session focuses on polymer synthesis, the relationships between polymer structure and properties, and the culture implications of polymers.

The two forms of polymer synthesis (addition and condensation) are described in terms of processes, resulting chemical structures and properties, and example materials. Factors affecting recyclability are described, along with defining thermoplastic and thermoset characteristics. Crystallization zones are presented as a means for controlling a polymer’s mechanical performance.

Prof. Sadoway summarizes the properties of polymers as follows:

  • Electrically insulating
  • Transparent to visible light (amorphous material) vs. opaque
  • Chemically inert
  • Strong covalent bonds (thus good for packaging)
  • Low density
  • Solid at room temperature

Polymers have had significant impact on society. The economic and performance improvements introduced by polymer-based substitute materials have transformed many aspects of modern daily life, and led to entirely new products. The class discussion ranges from early 20th century inventions (e.g. nylon, Bakelite), to the late 1960s fascination with plastics, to present-day concerns about recycling and human health impacts.

Homework

Problems (PDF)

Solutions (PDF)

Textbook Problems

[JS] Chapter 13, Sample Problems 13.1 and 13.4

For Further Study

Supplemental Readings

Perree, R. Bakelite: The Material of a Thousand Uses. Amsterdam, NL: Cadre, 1996. ISBN: 9789053492338.

Meikle, J. American Plastic: A Culture History. New Brunswick, NJ: Rutgers University Press, 1995. ISBN: 9780813522357.

Buy at MIT Press Brown, D. E. Inventing Modern America: From the Microwave to the Mouse. Cambridge, MA: MIT Press, 2001. ISBN: 9780262523493. [Companion website]

Carothers, W.H. Collected Papers of Wallace Hume Carothers on High Polymeric Substances. New York, NY: Interscience Publishers, 1940. ISBN: 9781406759259. [Download or view complete work from Internet Archive]

Furukawa, Y. Inventing Polymer Science: Staudinger, Carothers, and the Emergence of Macromolecular Science. Philadelphia, PA: University of Pennsylvania Press, 1998. ISBN: 9780812233360.

People

Wallace Carothers

Culture

“Mr. Cellophane.” Chicago. DVD. Miramax, 2003.

The Graduate. Directed by M. Nichols. DVD. MGM, 1967.

Other OCW and OER Content

Content Provider Level
Polymer Basics, The Glass Transition in Polymers, Crystallinity in Polymers DoITPoMS Undergraduate
3.063 Polymer Physics MIT OpenCourseWare Undergraduate (elective)
3.064 Polymer Engineering MIT OpenCourseWare Undergraduate (elective)
10.467 Polymer Science Laboratory MIT OpenCourseWare Undergraduate (elective) / Graduate
10.569 Synthesis of Polymers MIT OpenCourseWare Graduate
Introduction to Polymers OpenUniversity UK Masters

« Previous | Next »

Course Info

Learning Resource Types

groups Course Introduction
grading Exams with Solutions
notes Lecture Notes
theaters Lecture Videos
assignment_turned_in Problem Sets with Solutions
theaters Recitation Videos