Session Overview
Modules | Organic Materials |
Concepts | polymer synthesis by addition and condensation, polymer structure-property relationships, social and culture implications of polymers |
Keywords | plastics, addition polymerization, radical, condensation polymerization, amide bond, carbonyl group, electrical insulator, thermoplastic, thermoset, crystallization zone, Wallace Carothers, glass transition temperature, recycling, design for environment (DFE) |
Chemical Substances | polyester, poly(ethylene terephthalate) (PET), silicone, nylon, polyurethane, norbornene, isoprene, Bakelite |
Applications | polypropylene in lithium ion batteries, soda bottles and fabrics, electrical insulators, recycling and packaging |
Prerequisites
Before starting this session, you should be familiar with:
Looking Ahead
The next segment on biochemistry (Sessions 30 through 32) builds upon these introductory polymers sessions.
Learning Objectives
After completing this session, you should be able to:
- Define, compare and contrast the two forms of polymer synthesis.
- Summarize the key properties of polymers that determine their suitability for various applications.
- Explain the relationship between polymer structure and material properties, for instance the effect of crystallization zones on strength and transparency.
- Describe some factors that affect the recyclability of polymers.
Reading
Book Chapters | Topics |
---|---|
[PB-OC] 28, “Synthetic Polymers.” | Addition and condensation synthesis; addition (chain growth) and condensation (step growth) polymers; stereochemistry; dienes and rubber; copolymers; structure-property relationships |
[JS] 13.1, “Polymerization.” | Polymer form as it relates to synthesis; example of collagen |
[JS] 13.2, “Structural Features of Polymers.” | Polymer structure as it relates to synthesis; example of rubber vulcanization |
Lecture Video
Lecture 29: Polymers: Synthesis, Properties & Applications
Resources
Lecture Summary
This session focuses on polymer synthesis, the relationships between polymer structure and properties, and the culture implications of polymers.
The two forms of polymer synthesis (addition and condensation) are described in terms of processes, resulting chemical structures and properties, and example materials. Factors affecting recyclability are described, along with defining thermoplastic and thermoset characteristics. Crystallization zones are presented as a means for controlling a polymer’s mechanical performance.
Prof. Sadoway summarizes the properties of polymers as follows:
- Electrically insulating
- Transparent to visible light (amorphous material) vs. opaque
- Chemically inert
- Strong covalent bonds (thus good for packaging)
- Low density
- Solid at room temperature
Polymers have had significant impact on society. The economic and performance improvements introduced by polymer-based substitute materials have transformed many aspects of modern daily life, and led to entirely new products. The class discussion ranges from early 20th century inventions (e.g. nylon, Bakelite), to the late 1960s fascination with plastics, to present-day concerns about recycling and human health impacts.
Homework
Textbook Problems
[JS] Chapter 13, Sample Problems 13.1 and 13.4
For Further Study
Supplemental Readings
Perree, R. Bakelite: The Material of a Thousand Uses. Amsterdam, NL: Cadre, 1996. ISBN: 9789053492338.
Meikle, J. American Plastic: A Culture History. New Brunswick, NJ: Rutgers University Press, 1995. ISBN: 9780813522357.
Brown, D. E. Inventing Modern America: From the Microwave to the Mouse. Cambridge, MA: MIT Press, 2001. ISBN: 9780262523493.
Carothers, W.H. Collected Papers of Wallace Hume Carothers on High Polymeric Substances. New York, NY: Interscience Publishers, 1940. ISBN: 9781406759259. [Download or view complete work from Internet Archive]
Furukawa, Y. Inventing Polymer Science: Staudinger, Carothers, and the Emergence of Macromolecular Science. Philadelphia, PA: University of Pennsylvania Press, 1998. ISBN: 9780812233360.
People
Culture
“Mr. Cellophane.” Chicago. DVD. Miramax, 2003.
The Graduate. Directed by M. Nichols. DVD. MGM, 1967.
Other OCW and OER Content
Content | Provider | Level |
---|---|---|
Polymer Basics, The Glass Transition in Polymers, Crystallinity in Polymers | DoITPoMS | Undergraduate |
3.063 Polymer Physics | MIT OpenCourseWare | Undergraduate (elective) |
3.064 Polymer Engineering | MIT OpenCourseWare | Undergraduate (elective) |
10.467 Polymer Science Laboratory | MIT OpenCourseWare | Undergraduate (elective) / Graduate |
10.569 Synthesis of Polymers | MIT OpenCourseWare | Graduate |
Introduction to Polymers | OpenUniversity UK | Masters |