4.401/4.464 Environmental Technologies in Buildings
Wind
Measuring Wind

- Wind speed [km/h or m/s]
- Wind direction [degree]
Prevailing Winds at Logan Airport
United States - Land-Based and Offshore Annual Average Wind Speed at 80 m

Public domain image courtesy of NREL.
Wind Turbine Types

- Commercial turbines have a rated capacity from 0.5 to 8 MW at a diameter 30 m to 150 m and a hub height of 220 m.
- Residential turbines have a rated capacity under 30 kW, rotor diameters of 1 m to 15 m and a hub height up to 40 m.
- Total annual energy yield depends on a site's capacity factor which is usually in the 15% to 20% range.
Wind Turbine Types Analysis

Annual Energy = Rated Capacity x 8760 h x Capacity Factor

Annual Energy = 2 MW x 8760 x 15% = 2.6 million kWh
Corresponds to the annual energy use of ~200 homes.
Upfront cost = $15,000 to $20,000 per home

Annual Energy = 10 kW x 8760 x 15% = 13,000 kWh
Corresponds to the annual energy use of ~1 household (10,000 kWh).
Upfront cost = $50,000 to $80,000 per home

Left photo: © Hyundai Heavy Industries. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Right photo: Public domain image, courtesy of US Dept. of Energy on Flickr.
Wind Turbine Types Analysis

In 2016, 6% of US electricity came from wind power (US Energy Information Administration; https://www.eia.gov/electricity/data.php)
Bahrain World Trade Center

Architecture: Atkins
Wind turbines: Danish company Norwin A/S (225 kW)
Is this a good idea?
It is generally difficult to predict the electricity gains from building integrated wind turbines due to unknown and complicated/turbulent local wind patterns.

Other concerns associated with this technology are economy of scale issues (small wind turbine versus large ones) and well as noise and structural stress cause by these systems.

At the building level PV is comparable in price but at less maintenance cost and disturbance.

Effect of Terrain on Wind Velocity Profiles

Graph is only qualitative and should be used with caution.

Microclimatic Wind Patterns

July Winds From South

Wind Microclimatic Patterns, July, St. Louis, Missouri

Pressure Coefficients

- Wind Pressure: \[P_{\text{wind}} = 0.5 \times \text{mass-density}_{\text{air}} \times C_p \times \text{velocity}_{\text{air}}^2 \]
- \(C_p \) = pressure coefficient onto building façade, a pressure coefficient quantifies the interaction of wind with structure.
- Pressure coefficients are used to calculate wind loads and wind-induced air flow through naturally ventilated buildings.

Fig. 5 Local Pressure Coefficients for Walls of Low-Rise Building with Varying Wind Direction
(Holmes 1986)

Fig. 7 Surface-Averaged Wall Pressure Coefficients for Tall Buildings
(Akins et al. 1979)

Fig. 8 Local Roof Pressure Coefficients for Roof of Low-Rise Buildings
(Holmes 1986)
Temperature & Relative Humidity
Temperature Units

°F = (9/5 \times °C) + 32
1724 Daniel Gabriel Fahrenheit

°C = 5/9 \times (°F - 32)
1742 Anders Celsius

K = °C + 273
1848 Lord Kelvin
But… 😊

"Fahrenheit uses its digits more efficiently than Centigrade."
Dry Bulb Temperature

The dry-bulb temperature of an air sample, as determined by an ordinary thermometer, the thermometer’s bulb being dry. DBT is measured in Celsius or Fahrenheit.

On a microscopic scale, temperature can be defined as the average energy in each degree of freedom in the particles in a system.

What would happen if we wrapped a wet sock around the bulb?
Wet Bulb Temperature

The wet-bulb temperature is the temperature of an air sample after it has passed through a constant-pressure, ideal, adiabatic saturation process. In practice, this is the reading of a thermometer whose sensing bulb is covered with a wet sock evaporating into a rapid stream of the sample air.

The WBT is the same as the DBT when the air sample is saturated with water.

Dew point temperature (DPT) is the temperature at which a moist air sample at constant pressure would reach water vapor saturation, i.e. the water vapor begins to condense.
Relative Humidity

Relative Humidity (RH) is the ratio of the mole fraction of water vapor to the mole fraction of saturated moist air at the same temperature and pressure. RH is usually expressed as a percentage.

Absolute Humidity is the proportion of mass of water vapor per unit mass of dry air. AH is dimensionless, but is sometimes expressed as grams of water per kilogram of dry air (g/kg).

RH can be measured using a swing psychrometer. Modern sensors rely on resistive sensors (a polymer membrane whose resistance changes with temperature and RH).
Why do we obsess over moist air?
First Law of Thermodynamics

Energy can be converted from one form to another, but it is never created or destroyed.

An engraving of Robert Fludd’s 1618 “water screw” perpetual motion machine.

Public domain image courtesy of George A. Bockler on Wikipedia.
‘Heat’ (Internal Energy)

- **Internal energy** is a form of energy that is stored in a material as molecular motion (sensible energy) or that is associated with the phase of the material (latent energy).

- **Sensible energy** is measured in temperature.

- **Latent energy** is the amount of heat released or absorbed by a substance during a change of phase.
Internal Energy for Water

How should we describe annual temperature/RH?
Outdoor Temperature

Hourly max, min and mean temperatures from each month in the year.

Source: Tool under development by Alpha Arsano
A psychrometric chart is a graph of the physical properties of moist air at a constant pressure (usually at sea level).

The value of the psychrometric chart is the fact that if two independent properties of a given unit of moist air are known, other key physical properties can be determined.

The psychometric chart is the HVAC engineer’s, bioclimatic architect’s best friend.
Psychrometric Chart

Absolute humidity [g/kg]

Dry bulb temperature [°C]
Highlighted lines correspond to constant dry bulb temperatures.
Highlighted lines correspond to constant relative humidity states.
Let's HOBO...

What do you think the current inside and outside temperatures and relative humidities are?
Assignment 3 - Example

Carry a HOBO around with you all day.

Be bold. Go places but please do not break the sensors 😊.
Assignment 3 - Example

Print your day on the psychrometric chart.
Interpret your findings.
Indoor and Outdoor Environmental Conditions on an Early Fall Morning

Outside air
T = 21°C
RH = 92%

Room air
T = 23.4°C
RH = 49%
We are heating the air and reducing water content. How does MIT do this?
Psychrometric Chart

What happens here?

When moist air is heated or cooled it moves horizontally along a line of constant air humidity.
When air is cooled below the dew point temperature water vapor begins to condense; the air is ‘dried’/dehumidified. The drying process adds a latent load to the cooling process.
In our example we have to dry to 13°C to reach the desired temperature/RH combination in the room. We often overcool and reheat. Usually you also have to account for internal loads.
Latent Load

- Cooling required to remove unwanted moisture from an air-conditioned space.

Sensible Load

- Cooling required to cool the air in a space and remove heat from solar gains, electric lighting and other electronic internal gains.
What is the cooling load on the HVAC unit?
Let’s consult the enthalpy lines.
Specific enthalpy (h) is the energy content of moist air. It consists of sensible heat (dry bulb temperature) and latent heat (vaporized moisture content).

- Measure in units of kJ/kg or BTU/lb. Used to calculate the energy needed to change the condition of air.
- 1 BTU/lb = 2.326 kJ/kg
We are cooling from h_1 to h_2 and heating from h_2 to h_3.

- $h_2 - h_1 = 22.8 \text{ BTU/lb} - 31.8 \text{ BTU/lb} = -9 \text{ BTU/lb} = -20.9 \text{ kJ/kg}$ (negative for cooling)
- $h_3 - h_1 = 27.4 \text{ BTU/lb} - 22.8 \text{ BTU/lb} = 4.6 \text{ BTU/lb} = 10.7 \text{ kJ/kg}$ (positive for heating)
Typical Winter Situation

- Heating outside air in winter is very dry. This is why we recirculate air in residential buildings.
- Where is the fresh air coming from? Where is the moisture coming from?
You just weather-stripped your apartment, i.e. reduced the amount of uncontrolled air exchange with the outside via cracks in the building envelope. **On a cold day, is it going to be wetter or dryer than before in your apartment?**
What happens when you cook, take a shower?

1. Your kitchen/bathroom gets more humid and warmer.
2. Water condenses in cold corners and may trigger mold growth. What do you do?
3. Buy exhaust fans for kitchen and all bathrooms.
How Heat Recovery Ventilators Work

Stale, warm air drawn in from bathrooms and kitchen.

Fresh, heated air sent to living areas and bedrooms.

Cold, fresh air from outside is drawn in.

Cool, stale air from inside is exhausted to the outside.
What is happening?
Adiabatic Cooling

Dry air can be adiabatically cooled by adding water.
Adiabatic Processes

Moist air can be dried using a sorbent wheel.
Manitoba Hydro Building

Architecture: Bruce Kawabara;
Climate Concept: Transsolar
Completed 2009
Floor area: ~650,000 ft²
Measured savings 65% compared to MNECB

Photo © Gerry Kopelow. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Manitoba Hydro Building

Atrium water feature

- Water vapor
- Summer time
- Water flows down ribbons
- Chilled water dehumidifies air
- Warm water humidifies air
- Winter time

Diagram © Brian Christie. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Photo © Gerry Kopelow. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
In-Class Exercise
Psychrometric Chart in DIVA/Archsim
Winnipeg in Summer

Source: EPA
“Induce a feeling of being outdoors while actually being inside [...] by playing with the human senses:”

- Absence of the typical acoustic reverberation; walking on grass; green walls combined with dry mist, diffuse light from above
Reversío at EDIT Toronto 2017

© Transsolar Energietechnik GmbH. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://transsolar.com/projects/reversio
Reversío at EDIT Toronto 2017

https://transsolar.com/projects/reversio

© Transsolar Energietechnik GmbH. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://transsolar.com/projects/reversio
Questions?