7.36/7.91/20.390/20.490/6.802/6.874

2-12-14 Recitation
CB Lectures #2 and 3
Reminders

- Pset #1 due Feb. 20 at noon

- Pset #2 is posted - if you are new to programming in Python, be sure to start early
7.36/7.91 recitation

- Wed. 4-5 (Peter) or Thurs. 4-5 (Colette)

- We will go over material covered in lecture and work through practice problems

- Fri. 4-5 recitation (6.874) has extra AI material

- Today:
 - basic probability and statistics
 - next gen sequencing
 - dynamic programming and alignment
P-values

- The P-value is the probability of observing, under the null hypothesis, a test statistic at least as extreme as the one that was observed.

- What is the null model?
 - a basic or default position (e.g. two phenomena are not related, a coin is fair, etc.)
 - if there is no canonical distribution that captures behavior under the null, you can generate a null model by shuffling observed data (e.g. when aligning a query to a database, shuffle the database and see how often alignments occur by chance; shuffle sample labels)
P-value example

-You flip a coin 10 times and observe the following:
 8 heads
 2 tails

-Is this coin biased towards heads? How would you decide?

-Different null hypotheses require different tests
 -H₀: Coin is not biased toward heads (one-tailed test)
 -H₀: Coin is not biased (two-tailed test)
P-value example

- let $x =$ # of heads $= 8$, $n =$ # of trials $= 10$

- Calculate the probability of observing *at least* 8 heads, 2 tails under the *null model* H_0 that $p =$ P(heads) $= $ P(tails) $= 0.5$ (one-tailed test)

- Under the null model, the number of heads x out of n trials follows a Binomial Distribution with $p = 0.5$:

$$P(x; n, p) = \binom{n}{x} p^x (1 - p)^{n-x}$$
P-value example

- let $x = \# \text{ of heads} = 8$, $n = \# \text{ of trials} = 10$

- Calculate the probability of observing at least 8 heads, 2 tails under the null model H_0 that $p=\text{P(heads)}=\text{P(tails)}=0.5$ (one-tailed test)

$$P(x \geq 8; n = 10, p = 0.5) = \sum_{x=8}^{10} \binom{10}{x} (0.5)^x (1 - 0.5)^{10-x} = 0.05469$$

- We conclude that there is not enough evidence to reject the null hypothesis that coin is not biased towards heads at a significance level of 0.05 (since P-val > 0.05)

- If we were doing a two-sided test:

$$P(x \geq 8 \text{ or } x \leq 2; n = 10, p = 0.5) = \sum_{x=0,1,2,8,9,10} \binom{10}{x} (0.5)^x (1 - 0.5)^{10-x} = 0.109$$
Next-generation (2nd generation) sequencing

- Sequencing is always of DNA
 - need to convert RNA into DNA through reverse transcription (RT)

- Illumina is currently dominating the field: 8 lanes on a flow cell, each lane can sequence ~200 million reads of length 100bp (or ~100 million 100bp paired-end reads)
 - can mix samples by introducing a 6nt barcode unique to each sample
 - requires (heterogeneous) population of cells to get enough DNA for sample

- Single molecule sequencing (PacBio and Oxford Nanopore) with long reads (kb) has great potential, but technologies are still being developed
Sequence Alignments

Dynamic Programming:

- Local ungapped alignment (BLAST)

- Global alignment (all positions in both sequences must be matched, penalties at ends)

- Semiglobal alignment (all positions but no penalties at ends - longer sequence “matches” its ends to gaps flanking other sequence, but with no penalty)

- Local gapped alignment (highest scoring subsequence of x to subsequence of y)

- Match zinc finger domains of yeast Swi5 and Drosophila 1FU9

- Match promoter of chicken B-globin to the human genome

- Match mouse GAPDH to human GAPDH
Local ungapped alignment statistics (BLAST)

\[P(S > x) = 1 - e^{-KMNe^{-\lambda x}} \]

S: raw score (corresponding bit score - see BLAST tutorial)
M: (length of full query, regardless of match length)
N: (length of database)
x: score of match (match length indirectly affects this variable)
K, \(\lambda \) depend on score matrix & sequence composition
-We will give you K; \(\lambda \) is a parameter that scales inversely with magnitude of scoring system
Local ungapped alignment statistics (BLAST)

\[P(S > x) = 1 - e^{-KMNe^{-\lambda x}} \]

- The P-value for a score is the probability of obtaining a score at least as extreme as that which was observed.

- Since scoring system for x is discrete, for a one-sided test this is:

\[P\text{-val} = P(S \geq x) = P(S > x - 1) \]

- For continuous distributions in general, no correction needed:

\[P\text{-val} = P(S \geq x) = P(S > x) \]
Local ungapped alignment statistics
(BLAST) \[\sum_{i,j=A,C,G,T} p_i r_j e^{\lambda s_{ij}} = 1 \]

- \(p_i \): probability of nucleotide \(i \) in query
- \(r_j \): probability of nucleotide \(j \) in target (e.g., database)

If arbitrary scoring matrix, how many terms in \(\lambda \)?
- 16 (plus a constant) - no analytic solution

If one score (+ for match, - for mismatch), how many terms?
- 2 (plus a constant) - \(y=e^x \) yields quadratic equation with analytic solution; positive \(x \) gives unique solution

Any constraints on scoring matrix?
- Expected score must be negative. Otherwise random sequences would have positive scores and statistics break down.
Dynamic Programming

-Global, semiglobal, and local gapped alignments

-DP is a very powerful algorithmic paradigm in which a problem is solved by identifying a collection of subproblems and tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until all of them are solved

-Each subproblem is filling in one entry of the matrix - i.e., finding the best scoring alignment up to match indicated by matrix entry

-We must have immediate left, upper, and upper left diagonal entries to create a match up through new position (i+1, i+1)

-This gives us three options when aligning a new position:
 1. add gap in sequence 1 & use best alignment up to (i, i+1) (come from left)
 2. add gap in sequence 2 & use best alignment up to (i+1, i) (come from upper)
 3. match between two positions & use best alignment up to (i, i) (come from upper left diagonal)

-Fill out matrix entry by entry; use traceback at end to find highest scoring path
Local alignment example

Do a local alignment between these using PAM250 and gap penalty -2:

AWEK

FWEF

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>T</th>
<th>P</th>
<th>A</th>
<th>G</th>
<th>N</th>
<th>D</th>
<th>E</th>
<th>Q</th>
<th>H</th>
<th>R</th>
<th>K</th>
<th>M</th>
<th>I</th>
<th>L</th>
<th>V</th>
<th>F</th>
<th>Y</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-5</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>-5</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-4</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-5</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>3</td>
<td>-3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>-2</td>
<td>4</td>
<td>-4</td>
<td>-4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>-8</td>
<td>2</td>
<td>-5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>-4</td>
<td>-7</td>
<td>-7</td>
<td>-5</td>
<td>-3</td>
<td>2</td>
<td>3</td>
<td>-4</td>
<td>5</td>
<td>2</td>
<td>-2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Local alignment solution

<table>
<thead>
<tr>
<th></th>
<th>Gap</th>
<th>A</th>
<th>W</th>
<th>E</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-8</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

alignment:

W E
W E
Global alignment solution

<table>
<thead>
<tr>
<th></th>
<th>Gap</th>
<th>A</th>
<th>W</th>
<th>E</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>-4</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>W</td>
<td>-4</td>
<td>-6</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>-6</td>
<td>-4</td>
<td>-6</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>F</td>
<td>-8</td>
<td>-6</td>
<td>-4</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

alignment: A W E K F W E F
<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Semiglobal</th>
<th>Local (gapped)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penalties at edges?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Reset to 0 instead of including negative entries?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>End of alignment</td>
<td>Bottom right entry</td>
<td>Highest score entry in bottom row or rightmost column</td>
<td>Highest score entry in matrix</td>
</tr>
</tbody>
</table>