Predictive Route Guidance

An Interesting ITS Application

Jon Bottom

Charles River Associates
Introduction
Goals of presentation

- Provide an overview of predictive route guidance
Goals of presentation

- Provide an overview of predictive route guidance
- Give a sense of what's known
Goals of presentation

- Provide an overview of predictive route guidance
- Give a sense of what's known
- Give a sense of what's *not* known
Goals of presentation

- Provide an overview of predictive route guidance
- Give a sense of what's known
- Give a sense of what's *not* known
- Identify some of the major issues
Why travel information?

People have an imperfect knowledge of the network
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming (2003): types of network awareness
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming (2003): types of network awareness
 - wayfinding
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

- Travel conditions are variable
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion

- By providing better travel information
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming(2003): types of network awareness
 - wayfinding

- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion

- By providing better travel information
 - Individuals make better travel decisions (probably)
Why travel information?

- People have an imperfect knowledge of the network
 - Possible 10% savings from better knowledge of paths (Autoguide)
 - Ramming (2003): types of network awareness
 - wayfinding

- Travel conditions are variable
 - 40-50% of delays on major U.S. roadways are incident-related (TTI)
 - recurrent vs. non-recurrent congestion

- By providing better travel information
 - Individuals make better travel decisions (probably)
 - Network conditions improve overall (maybe)
What is travel information?

- Some means of communicating with travelers . . .
What is travel information?

Some means of communicating with travelers ...
- Before they begin trip ("pre-trip")
What is travel information?

Some means of communicating with travelers . . .
- Before they begin trip ("pre-trip")
- During their trip ("en route")
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we’ll use both interchangeably ("messages")
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we’ll use both interchangeably ("messages")

- Based on network conditions
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we’ll use both interchangeably ("messages")

- Based on network conditions
 - In the past ("historical" guidance)
What is travel information?

- Some means of communicating with travelers . . .
 - Before they begin trip ("pre-trip")
 - During their trip ("en route")

- To give them trip-related data . . .
 - Travel conditions ("information")
 - Travel recommendations ("guidance")
 - Here we’ll use both interchangeably ("messages")

- Based on network conditions
 - In the past ("historical" guidance)
 - In the present ("current" guidance)
What is travel information?

Some means of communicating with travelers . . .
- Before they begin trip ("pre-trip")
- During their trip ("en route")

To give them trip-related data . . .
- Travel conditions ("information")
- Travel recommendations ("guidance")
- Here we’ll use both interchangeably ("messages")

Based on network conditions
- In the past ("historical" guidance)
- In the present ("current" guidance)
- In the future ("predictive" guidance)
Responses to travel information

- Psychological responses
Psychological responses

- Feel better knowing what’s happening
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule

- Trip-related responses
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule

- Trip-related responses
 - Cancel trip
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule

- Trip-related responses
 - Cancel trip
 - Pre-trip: Change departure time, route, mode
Responses to travel information

- Psychological responses
 - Feel better knowing what’s happening

- Activity-related responses
 - Call ahead to destination
 - Rearrange activity schedule

- Trip-related responses
 - Cancel trip
 - Pre-trip: Change departure time, route, mode
 - En route: Change route, mode
Route guidance
Let’s think about:
Guidance issues

Let’s think about:

◆ What data are needed
Guidance issues

Let’s think about:
- What data are needed
- How they’re collected
Let’s think about:
- What data are needed
- How they’re collected
- How they’re processed
Let’s think about:
- What data are needed
- How they’re collected
- How they’re processed
- How messages are communicated
Guidance issues

Let’s think about:
- What data are needed
- How they’re collected
- How they’re processed
- How messages are communicated
- How network reacts
Guidance issues

- Let’s think about:
 - What data are needed
 - How they’re collected
 - How they’re processed
 - How messages are communicated
 - How network reacts
 - How guidance system reacts
Historical guidance

- Data needed:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

- How collected:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

- How collected:
 - Various - no time pressure!

- How processed:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

- How collected:
 - Various - no time pressure!

- How processed:
 - Used to compute (time-dependent?) minimum paths

- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

- How collected:
 - Various - no time pressure!

- How processed:
 - Used to compute (time-dependent?) minimum paths

- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos

- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time
- How collected:
 - Various - no time pressure!
- How processed:
 - Used to compute (time-dependent?) minimum paths
- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos
- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse
- How guidance system reacts:
Historical guidance

- Data needed:
 - Travel conditions (link, subpath, path, O-D) over time

- How collected:
 - Various - no time pressure!

- How processed:
 - Used to compute (time-dependent?) minimum paths

- How communicated:
 - "Pull" system used for wayfinding
 - Examples: Mapquest, GPS-based in-vehicle gizmos

- How network reacts:
 - Recurrent congestion: save 10%? (depends on participation)
 - Non-recurrent congestion: conditions get worse

- How guidance system reacts:
 - Update travel condition database
Data needed:
Data needed:
- Prevailing travel conditions (link times, incident presence)
Current guidance

Data needed:
- Prevailing travel conditions (link times, incident presence)

How collected:
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
Data needed:
- Prevailing travel conditions (link times, incident presence)

How collected:
- inductive loop detectors; radar (spot speeds, counts)
- closed circuit TV; cell phones (incidents)
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

- How processed:
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

- How processed:
 - Fuse data sources located across network ("centralized")
Current guidance

Data needed:
- Prevailing travel conditions (link times, incident presence)

How collected:
- inductive loop detectors; radar (spot speeds, counts)
- closed circuit TV; cell phones (incidents)

How processed:
- Fuse data sources located across network ("centralized")
- Estimate of conditions on complete network or subsystem
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem

- How communicated:
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem

- How communicated:
 - Non-trivial problem to convey details to drivers
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)

- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem

- How communicated:
 - Non-trivial problem to convey details to drivers

- How network reacts:
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)

- How collected:
 - Inductive loop detectors; radar (spot speeds, counts)
 - Closed circuit TV; cell phones (incidents)

- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem

- How communicated:
 - Non-trivial problem to convey details to drivers

- How network reacts:
 - Depends on time-stability of prevailing conditions
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:
 - Depends on time-stability of prevailing conditions
- How guidance system reacts:
Current guidance

- Data needed:
 - Prevailing travel conditions (link times, incident presence)
- How collected:
 - inductive loop detectors; radar (spot speeds, counts)
 - closed circuit TV; cell phones (incidents)
- How processed:
 - Fuse data sources located across network ("centralized")
 - Estimate of conditions on complete network or subsystem
- How communicated:
 - Non-trivial problem to convey details to drivers
- How network reacts:
 - Depends on time-stability of prevailing conditions
- How guidance system reacts:
 - Update condition estimation algorithms, database
Data needed:
Data needed:
- Network model
Data needed:
- Network model
- Prevailing travel conditions
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
 - Depends on quality of predictions, guidance

- How guidance system reacts:
 - Track discrepancies between predictions, reality
 - Update algorithms, databases
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
- **Data needed:**
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- **How collected:**
 - Vehicle tracking technologies
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures
Predictive guidance

Data needed:
- Network model
- Prevailing travel conditions
- Historical demand information

How collected:
- Vehicle tracking technologies
- Image processing; ILD, cell phone signatures

How processed:
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
Predictive guidance

Data needed:
- Network model
- Prevailing travel conditions
- Historical demand information

How collected:
- Vehicle tracking technologies
- Image processing; ILD, cell phone signatures

How processed:
- Forecast future demand, conditions
- Generate guidance
Predictive guidance

Data needed:
- Network model
- Prevailing travel conditions
- Historical demand information

How collected:
- Vehicle tracking technologies
- Image processing; ILD, cell phone signatures

How processed:
- Forecast future demand, conditions
- Generate guidance
- Reconcile as necessary
Predictive guidance

Data needed:
- Network model
- Prevailing travel conditions
- Historical demand information

How collected:
- Vehicle tracking technologies
- Image processing; ILD, cell phone signatures

How processed:
- Forecast future demand, conditions
- Generate guidance
- Reconcile as necessary

How communicated:
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
 - Depends on quality of predictions, guidance
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
 - Depends on quality of predictions, guidance

- How guidance system reacts:
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
 - Depends on quality of predictions, guidance

- How guidance system reacts:
 - Track discrepancies between predictions, reality
Predictive guidance

- Data needed:
 - Network model
 - Prevailing travel conditions
 - Historical demand information

- How collected:
 - Vehicle tracking technologies
 - Image processing; ILD, cell phone signatures

- How processed:
 - Forecast future demand, conditions
 - Generate guidance
 - Reconcile as necessary

- How communicated:
 - Like current guidance

- How network reacts:
 - Depends on quality of predictions, guidance

- How guidance system reacts:
 - Track discrepancies between predictions, reality
 - Update algorithms, databases
Predictive route guidance
Suppose we have a great network prediction model
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
Suppose we have a great network prediction model
Suppose we can tell drivers our predictions
Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
The key issue - Part I

Suppose we have a great network prediction model
Suppose we can tell drivers our predictions
Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the *opposite* to "avoid the crowd"

- If a significant number of drivers change their decisions in some way
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"

- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"

- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions
- Will invalidate our predictions!
The key issue - Part I

- Suppose we have a great network prediction model
- Suppose we can tell drivers our predictions
- Drivers listen to us and do what they do:
 - Some ignore us completely
 - Some factor what we say into their routing decisions
 - Some do the opposite to "avoid the crowd"

- If a significant number of drivers change their decisions in some way
- The effects of their decisions on network conditions
- Will invalidate our predictions!

- The Self-Defeating Prophecy!!
Example of a self-defeating prophecy
Example of a self-defeating prophecy

Suppose we predict congestion on one of two parallel routes
Example of a self-defeating prophecy

- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
Example of a self-defeating prophecy
- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
- If enough of them listen to us and shift to the other route
Example of a self-defeating prophecy
- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
- If enough of them listen to us and shift to the other route
- It may congest worse than what we predicted for the original
Example of a self-defeating prophecy
- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
- If enough of them listen to us and shift to the other route
- It may congest worse than what we predicted for the original
- And leave the original route free-flowing
The key issue - Part II

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing

- Another possibility:
The key issue - Part II

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing

- Another possibility:
 - Congestion oscillates from one route to the other
Example of a self-defeating prophecy

- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
- If enough of them listen to us and shift to the other route
- It may congest worse than what we predicted for the original
- And leave the original route free-flowing

Another possibility:
- Congestion oscillates from one route to the other

In all these cases, guidance was based on wrong predictions
The key issue - Part II

- Example of a self-defeating prophecy
 - Suppose we predict congestion on one of two parallel routes
 - We tell drivers about it
 - If enough of them listen to us and shift to the other route
 - It may congest worse than what we predicted for the original
 - And leave the original route free-flowing

- Another possibility:
 - Congestion oscillates from one route to the other

- In all these cases, guidance was based on wrong predictions
 - We’ve probably made network conditions worse
Example of a self-defeating prophecy

- Suppose we predict congestion on one of two parallel routes
- We tell drivers about it
- If enough of them listen to us and shift to the other route
- It may congest worse than what we predicted for the original
- And leave the original route free-flowing

Another possibility:

- Congestion oscillates from one route to the other

In all these cases, guidance was based on wrong predictions

- We’ve probably made network conditions worse
- And people will eventually stop listening to us
Guidance is "consistent"
The key issue - Part III

- Guidance is "consistent"
- When the network condition predictions
The key issue - Part III

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
The key issue - Part III

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
- Turn out to be true (within limits of model accuracy)
The key issue - Part III

- Guidance is "consistent"
- When the network condition predictions
- On which our guidance messages are based
- Turn out to be true (within limits of model accuracy)
- After drivers receive the messages and react to them
Guidance is "consistent"
When the network condition predictions
On which our guidance messages are based
Turn out to be true (within limits of model accuracy)
After drivers receive the messages and react to them

How do we compute consistent guidance?
If only a small fraction of drivers receive predictive guidance
If only a small fraction of drivers receive predictive guidance

Or react to the guidance messages
If only a small fraction of drivers receive predictive guidance
Or react to the guidance messages
Their reactions will not affect network conditions –
Side points

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
 - The consistency problem does not arise
- The individual drivers may benefit
- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
Side points

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
 - The individual drivers may benefit
 - But network conditions are unchanged
- It’s possible to make predictions by extrapolation:
If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged

It's possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
Side points

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
 - The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged
- It’s possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
- At least one company currently does this
Side points

- If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
 - The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged

- It’s possible to make predictions by extrapolation:
 - Use current conditions, historical trends, other info
- At least one company currently does this
- Difficult to factor driver response into extrapolations
If only a small fraction of drivers receive predictive guidance
- Or react to the guidance messages
- Their reactions will not affect network conditions –
- The consistency problem does not arise
 - The individual drivers may benefit
 - But network conditions are unchanged

It’s possible to make predictions by extrapolation:
- Use current conditions, historical trends, other info
- At least one company currently does this
- Difficult to factor driver response into extrapolations
- Won’t consider further
System approach
Rolling horizon approach
Rolling horizon approach

- Consider a *guidance horizon*
Rolling horizon approach

- Consider a guidance horizon
- Say 1-2 hours into the future
Major steps

- Rolling horizon approach
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- Generate guidance for each *guidance interval* within guidance horizon
Major steps

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
Rolling horizon approach
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

Generate guidance for each *guidance interval* within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
Major steps

- Rolling horizon approach
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- Generate guidance for each *guidance interval* within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - *Affects stability of network conditions*
- **Rolling horizon approach**
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- **Generate guidance for each *guidance interval* within guidance horizon**
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

- **Generation uses network model over guidance horizon**
Major steps

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future

Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

Generation uses network model over guidance horizon

Network model uses continuously collected data inputs

Each update interval guidance is re-computed
Major steps

- Rolling horizon approach
 - Consider a guidance horizon
 - Say 1-2 hours into the future
- Generate guidance for each guidance interval within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions
- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each update interval guidance is re-computed
 - Each update, the process is rolled forward by one period
Major steps

- Rolling horizon approach
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- Generate guidance for each *guidance interval* within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each *update interval* guidance is re-computed
 - Each update, the process is rolled forward by one period
 - Update interval might be one/several guidance intervals
Major steps

- **Rolling horizon approach**
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- **Generate guidance for each *guidance interval* within guidance horizon**
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

- **Generation uses network model over guidance horizon**
- **Network model uses continuously collected data inputs**
- **Each *update interval* guidance is re-computed**
 - Each update, the process is rolled forward by one period
 - Update interval might be one/ several guidance intervals
 - Depends on data processing, communication times
Major steps

- Rolling horizon approach
 - Consider a *guidance horizon*
 - Say 1-2 hours into the future

- Generate guidance for each *guidance interval* within guidance horizon
 - Guidance remains fixed over guidance interval
 - Say 5-10 minutes
 - Affects stability of network conditions

- Generation uses network model over guidance horizon
- Network model uses continuously collected data inputs
- Each *update interval* guidance is re-computed
 - Each update, the process is rolled forward by one period
 - Update interval might be one/several guidance intervals
 - Depends on data processing, communication times
- If an incident is detected, reset
A network model for guidance
Conventional network models

- These network models assume drivers have perfect information
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
These network models assume drivers have perfect information
- If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) \(F \)
 - Time-dependent path traversal times \(T \)
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T

- DTA model components are
 - network loader (S):
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) \(F \)
 - Time-dependent path traversal times \(T \)
- DTA model components are
 - network loader \((S) \):
 - inputs path flows \((F) \)
These network models assume drivers have perfect information
- If this were true, no need for route guidance!

Only consider dynamic traffic assignment (DTA) models
- Needed to reflect changing network realities
- All variables are time-dependent
- Key variables are:
 - Time-dependent path flows (departures) \(F \)
 - Time-dependent path traversal times \(T \)

DTA model components are
- network loader \((S)\):
 - inputs path flows \((F)\)
 - outputs link times and flows; path times \((T)\)
These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T

DTA model components are
 - network loader (S):
 - inputs path flows (F)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!

- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T

- DTA model components are
 - network loader (S):
 - inputs path flows (F)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (T)
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (F)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (T)
 - outputs path flows (F)
Conventional network models

- These network models assume drivers have perfect information
 - If this were true, no need for route guidance!
- Only consider dynamic traffic assignment (DTA) models
 - Needed to reflect changing network realities
 - All variables are time-dependent
 - Key variables are:
 - Time-dependent path flows (departures) F
 - Time-dependent path traversal times T
- DTA model components are
 - network loader (S):
 - inputs path flows (F)
 - outputs link times and flows; path times (T)
 - driver behavior (path choice) model (D):
 - inputs path times (T)
 - outputs path flows (F)
- Picture!
Conventional analysis of DTA models is based on the equilibrium as a fixed point.
Equilibrium as a fixed point

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
Equilibrium as a fixed point

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
Conventional analysis of DTA models is based on
Infinite-dimensional variational inequalities
Turns out to be difficult to generalize to guidance problem
Fixed point approach more applicable
Equilibrium as a fixed point

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
- Fixed point approach more applicable

- Fixed point definition
 for $T : X \mapsto X$, $X \subseteq \mathbb{R}^n$ (or X more general)
 find $x^* \in X$ such that $x^* = T(x^*)$
Equilibrium as a fixed point

- Conventional analysis of DTA models is based on
- Infinite-dimensional variational inequalities
- Turns out to be difficult to generalize to guidance problem
- Fixed point approach more applicable

Fixed point definition

\[T : X \mapsto X, \quad X \subseteq \mathbb{R}^n \quad \text{(or } X \text{ more general)} \]
\[\text{find } x^* \in X \text{ such that } x^* = T(x^*) \]

Fixed point expresses an equilibrium condition

\[S \circ D(T) = T \]
\[D \circ S(F) = F \]
Guidance network models

- Need to account for new aspects of problem
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
Guidance network models

Need to account for new aspects of problem
- Guidance messages \((M)\)
- Driver behavior taking account of messages \((D)\)
- Message generation based on network conditions \((G)\)

Key variables are:
- Time-dependent path, subpath splits \((P)\)
- Time-dependent path, subpath traversal times \((T)\)
- Time-dependent guidance messages \((M)\)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages \(M \)
 - Driver behavior taking account of messages \(D \)
 - Message generation based on network conditions \(G \)

- Key variables are:
 - Time-dependent path, subpath splits \(P \)
 - Time-dependent path, subpath traversal times \(T \)
 - Time-dependent guidance messages \(M \)

- Guidance model components are
 - network loader \(S \):
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G):
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G):
 - inputs path, subpath times (T)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G):
 - inputs path, subpath times (T)
 - outputs guidance messages (M)
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages \(M \)
 - Driver behavior taking account of messages \(D \)
 - Message generation based on network conditions \(G \)

- Key variables are:
 - Time-dependent path, subpath splits \(P \)
 - Time-dependent path, subpath traversal times \(T \)
 - Time-dependent guidance messages \(M \)

- Guidance model components are
 - network loader \(S \):
 - inputs path splits \(P \)
 - outputs link times and flows; path, subpath times \(T \)
 - guidance generator \(G \):
 - inputs path, subpath times \(T \)
 - outputs guidance messages \(M \)
 - driver behavior model \(D \):
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G'):
 - inputs path, subpath times (T)
 - outputs guidance messages (M)
 - driver behavior model (D):
 - inputs guidance messages (G')
Guidance network models

- Need to account for new aspects of problem
 - Guidance messages (M)
 - Driver behavior taking account of messages (D)
 - Message generation based on network conditions (G)

- Key variables are:
 - Time-dependent path, subpath splits (P)
 - Time-dependent path, subpath traversal times (T)
 - Time-dependent guidance messages (M)

- Guidance model components are
 - network loader (S):
 - inputs path splits (P)
 - outputs link times and flows; path, subpath times (T)
 - guidance generator (G):
 - inputs path, subpath times (T)
 - outputs guidance messages (M)
 - driver behavior model (D):
 - inputs guidance messages (G)
 - outputs path, subpath splits (P)
Consistency as a fixed point

Fixed point expresses a consistency condition

\[
G \circ S \circ D(M) = M
\]
\[
D \circ G \circ S(P) = P
\]
\[
S \circ D \circ G(T) = T
\]
Consistency as a fixed point

- Fixed point expresses a consistency condition

\[
G \circ S \circ D(M) = M \\
D \circ G \circ S(P) = P \\
S \circ D \circ G(T) = T
\]

- There are heuristic algorithms for solving these, but they are very slow
Consistency as a fixed point

- Fixed point expresses a consistency condition

\[G \circ S \circ D(M) = M \]
\[D \circ G \circ S(P) = P \]
\[S \circ D \circ G(T) = T \]

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)
Consistency as a fixed point

- Fixed point expresses a consistency condition

\[G \circ S \circ D(M) = M \]
\[D \circ G \circ S(P) = P \]
\[S \circ D \circ G(T) = T \]

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)
 - iterate averaging methods (Polyak averaging)
Consistency as a fixed point

- Fixed point expresses a consistency condition

\[G \circ S \circ D(M) = M \]
\[D \circ G \circ S(P) = P \]
\[S \circ D \circ G(T) = T \]

- There are heuristic algorithms for solving these, but they are very slow
 - the method of successive averages (MSA)
 - iterate averaging methods (Polyak averaging)
- My doctoral research was on this
Research needs
Basic models and components
Basic models and components
 - Real-time dynamic O-D matrix estimation
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance

- Algorithms and computational methods
 - Improved fixed point solution methods
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance

- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods

- System architecture and design
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance

- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods

- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues

- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance

- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods

- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues

- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)
 - Vehicle-centric guidance
What needs doing

- Basic models and components
 - Real-time dynamic O-D matrix estimation
 - Models of driver response to guidance
- Algorithms and computational methods
 - Improved fixed point solution methods
 - Approximate solution methods
- System architecture and design
 - Designs for an operational system
 - Decentralization approaches
 - Multi-regional issues
- New ideas
 - Adaptive guidance in presence of uncertainty (Gao 2004)
 - Vehicle-centric guidance
 - Hybrid centralized/vehicle-centric systems (Farver 2005)
Thank you! – Questions?