Choice Theory – A Synopsis

1. Basic Concepts:
 - 1. Choice
 - 2. Preference
 - 3. Utility

2. Weak Axiom of Revealed Preferences
3. Preference as a representation of choice
4. Ordinal Utility Representation
5. Continuity
Basic Concepts

- $X = \text{Set of Alternatives}$
 - Mutually exclusive
 - Exhaustive
- $A = \text{non-empty set of available alternatives}$
- Choice Function: $c : A \mapsto c(A) \subseteq A$.
 - $c(A)$ is non-empty
- Preference: A relation \succeq on X that is
 - complete: $\forall x, y \in X$, either $x \succeq y$ or $y \succeq x$;
 - transitive: $\forall x, y, z \in X$, $[x \succeq y \text{ and } y \succeq z] \Rightarrow x \succeq z$.
- Utility Function: $U : X \rightarrow \mathbb{R}$

Choice Function

- $c : A \mapsto c(A) \subseteq A$
- It describes what alternatives DM may choose under each set of constraints
- Feasibility: $c(A) \subseteq A$.
- Exhaustive: $c(A)$ is non-empty
- Mutually exclusive: only one alternative is chosen
Preference

- Preference Relation: A relation \(\succeq \) on \(X \) s.t.
 - complete: \(\forall x, y \in X \), either \(x \succeq y \) or \(y \succeq x \);
 - transitive: \(\forall x, y, z \in X \), \([x \succeq y \text{ and } y \succeq z] \Rightarrow x \succeq z \).
- \(x \succeq y \) means: DM finds \(x \) at least as good as \(y \)
- Preferences do not depend on \(A \)!
- Strict Preference: \(x > y \leftrightarrow [x \succeq y \text{ and not } y \succeq x] \)
- Indifference: \(x \sim y \leftrightarrow [x \succeq y \text{ and } y \succeq x] \).
- Choice induced by preference:
 \[c_>(A) = \{x \in A | x \succeq y \ \forall y \in A\} \]

Choice v. Preference

Definition: A choice function \(c \) is represented by \(\succeq \) iff \(c = c_\succ \).

Theorem: Assume that \(X \) is finite. A choice function \(c \) is represented by some preference relation \(\succeq \) if and only if \(c \) satisfies WARP.
Weak Axiom of Revealed Preference

Axiom (WARP): For all \(A, B \subseteq X\) and \(x, y \in A \cap B\), if \(x \in c(A)\) and \(y \in c(B)\), then \(x \in c(B)\).

- **WARP:** DM has well-defined preferences
 - That govern the choice
 - Don’t depend on the set \(A\) of feasible alternatives

Ordinal Utility Representation

Ordinal Representation: \(U : X \rightarrow \mathbb{R}\) is an ordinal representation of \(\succeq\) iff:
\[
x \succeq y \iff U(x) \geq U(y) \quad \forall x, y \in X.
\]

Fact: If \(U\) represents \(\succeq\) and \(f : \mathbb{R} \rightarrow \mathbb{R}\) is strictly increasing, then \(f \circ U\) represents \(\succeq\).

Theorem: Assume \(X\) is finite (or countable). A relation has an ordinal representation if and only if it is complete and transitive.

Example: Lexicographic preference relation on unit square does not have an ordinal representation.
Continuous Representation

Definition: A preference relation \succeq is said to be continuous iff $\{y \mid y \succeq x\}$ and $\{y \mid x \succeq y\}$ are closed for every x in X.

Theorem: Assume X is a compact, convex subset of a separable metric space. A preference relation has a continuous ordinal representation if and only if it is continuous.

Indifference Sets of a Continuous Preference

- $l(x) = \{ y \mid x \sim y \}$
- $l(x)$ is closed.
- If
 - $x' \succ x \succ x''$
 - $\phi:[0,1] \to X$ continuous
 - $\phi(1)=x'$; $\phi(0)=x''$,
- Then, $\exists \ t \in [0,1]$ such that $\phi(t) \sim x$.