Recursive Methods
• study Functional Equation (Bellman equation) with bounded and continuous F

• tools: contraction mapping and theorem of the maximum
Bellman Equation as a Fixed Point

• define operator

\[T(f)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \} \]

• \(V \) solution of BE \(\iff \) \(V \) fixed point of \(T \) [i.e. \(TV = V \)]

Bounded Returns:

• if \(\|F\| < B \) and \(F \) and \(\Gamma \) are continuous: \(T \) maps continuous bounded functions into continuous bounded functions

• bounded returns \(\Rightarrow \) \(T \) is a Contraction Mapping \(\Rightarrow \) unique fixed point

• many other bonuses
Our Favorite Metric Space

\[S = \left\{ f : X \to R, \text{ } f \text{ is continuous, and } \|f\| \equiv \sup_{x \in X} |f(x)| < \infty \right\} \]

with

\[\rho(f, g) = \|f - g\| \equiv \sup_{x \in X} |f(x) - g(x)| \]

Definition. A linear space \(S \) is complete if any Cauchy sequence converges. For a definition of a Cauchy sequence and examples of complete metric spaces see SLP.

Theorem. The set of bounded and continuous functions is Complete. See SLP.
Definition. Let (S, ρ) be a metric space. Let $T : S \rightarrow S$ be an operator. T is a contraction with modulus $\beta \in (0, 1)$

$$\rho(Tx, Ty) \leq \beta \rho(x, y)$$

for any x, y in S.

Introduction to Dynamic Optimization
Contraction Mapping Theorem

Theorem (CMThm). If T is a contraction in (S, ρ) with modulus β, then (i) there is a unique fixed point $s^* \in S$,

$$s^* = Ts^*$$

and (ii) iterations of T converge to the fixed point

$$\rho(T^n s_0, s^*) \leq \beta^n \rho(s_0, s^*)$$

for any $s_0 \in S$, where $T^{n+1}(s) = T(T^n(s))$.

Introduction to Dynamic Optimization
Nr. 6
for (i) **1st step:** construct fixed point \(s^* \)
take any \(s_0 \in S \) define \(\{s_n\} \) by \(s_{n+1} = Ts_n \) then

\[
\rho(s_2, s_1) = \rho(Ts_1, Ts_0) \leq \beta \rho(s_1, s_0)
\]

generalizing \(\rho(s_{n+1}, s_n) \leq \beta^n \rho(s_1, s_0) \) then, for \(m > n \)

\[
\rho(s_m, s_n) \leq \rho(s_m, s_{m-1}) + \rho(s_{m-1}, s_{m-2}) + \cdots + \rho(s_{n+1}, s_n)
\leq [\beta^{m-1} + \beta^{m-2} + \cdots + \beta^n] \rho(s_1, s_0)
\leq \beta^n [\beta^{m-n-1} + \beta^{m-n-2} + \cdots + 1] \rho(s_1, s_0)
\leq \frac{\beta^n}{1 - \beta} \rho(s_1, s_0)
\]

thus \(\{s_n\} \) is cauchy. hence \(s_n \to s^* \)
2nd step: show $s^* = Ts^*$

$$\rho(Ts^*, s^*) \leq \rho(Ts^*, s_n) + \rho(s^*, s_n) \leq \beta \rho(s^*, s_{n-1}) + \rho(s^*, s_n) \to 0$$

3nd step: s^* is unique. $Ts_1^* = s_1^*$ and $s_2^* = Ts_2^*$

$$0 \leq a = \rho(s_1^*, s_2^*) = \rho(Ts_1^*, Ts_2^*) \leq \beta \rho(s_1^*, s_2^*) = \beta a$$

only possible if $a = 0 \Rightarrow s_1^* = s_2^*$.

Finally, as for (ii):

$$\rho(T^n s_0, s^*) = \rho(T^n s_0, Ts^*) \leq \beta \rho(T^{n-1} s_0, s^*) \leq \cdots \leq \beta^n \rho(s_0, s^*)$$
Corollary. Let S be a complete metric space, let $S' \subset S$ and S' close. Let T be a contraction on S and let $s^* = Ts^*$. Assume that

$$T(S') \subset S', \text{ i.e. if } s' \in S, \text{ then } T(s') \in S'$$

then $s^* \in S'$. Moreover, if $S'' \subset S'$ and

$$T(S') \subset S'', \text{ i.e. if } s' \in S', \text{ then } T(s') \in S''$$

then $s^* \in S''$.

Blackwell’s sufficient conditions.
Let S be the space of bounded functions on X, and $\|\cdot\|$ be given by the sup norm. Let $T : S \rightarrow S$. Assume that (i) T is monotone, that is,

$$Tf(x) \leq Tg(x)$$

for any $x \in X$ and g, f such that $f(x) \geq g(x)$ for all $x \in X$, and (ii) T discounts, that is, there is a $\beta \in (0, 1)$ such that for any $a \in R_+$,

$$T(f + a)(x) \leq Tf(x) + a\beta$$

for all $x \in X$. Then T is a contraction.
Proof. By definition
\[f = g + f - g \]
and using the definition of \(\| \cdot \| \),
\[f(x) \leq g(x) + \| f - g \| \]
then by monotonicity i)
\[Tf \leq T(g + \| f - g \|) \]
and by discounting ii) setting \(a = \| f - g \| \)
\[Tf \leq T(g) + \beta \| f - g \| . \]
Reversing the roles of \(f \) and \(g \):
\[Tg \leq T(f) + \beta \| f - g \| \]
\[\Rightarrow \| Tf - Tg \| \leq \beta \| f - g \| \]
Bellman equation application

\[(Tv)(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}\]

Assume that \(F\) is bounded and continuous and that \(\Gamma\) is continuous and has compact range.

Theorem. \(T\) maps the set of continuous and bounded functions \(S\) into itself. Moreover \(T\) is a contraction.
Proof. That T maps the set of continuous and bounded follow from the Theorem of Maximum (we do this next)
That T is a contraction follows since T satisfies the Blackwell sufficient conditions.
T satisfies the Blackwell sufficient conditions. For monotonicity, notice that for $f \geq v$

$$Tv(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \}$$
$$= F(x, g(x)) + \beta v(g(x))$$
$$\leq \{ F(x, g(y)) + \beta f(g(x)) \}$$
$$\leq \max_{y \in \Gamma(x)} \{ F(x, y) + \beta f(y) \} = Tf(x)$$

A similar argument follows for discounting: for $a > 0$

$$T(v + a)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta (v(y) + a) \}$$
$$= \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \} + \beta a = T(v)(x) + \beta a.$$
Theorem of the Maximum

• want T to map continuous function into continuous functions

\[(Tv)(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \} \]

• want to learn about optimal policy of RHS of Bellman

\[G(x) = \arg \max_{y \in \Gamma(x)} \{ F(x, y) + \beta v(y) \} \]

• First, continuity concepts for correspondences
• ... then, a few example maximizations
• ... finally, Theorem of the Maximum
assume Γ is non-empty and compact valued (the set $\Gamma(x)$ is non empty and compact for all $x \in X$)

Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to x$ and $x_n \in \Gamma(y_n)$ there exists a subsequence of $\{y_n\}$ that converges to a point $y \in \Gamma(x)$.

Lower Hemi Continuity (l.h.c.) at x: for any sequence $\{x_n\}$ with $x_n \to x$ and for every $y \in \Gamma(x)$ there exists a sequence $\{y_n\}$ with $x_n \in \Gamma(y_n)$ such that $y_n \to y$.

Continuous at x: if Γ is both upper and lower hemi continuous at x
Max Examples

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]
\[G(x) = \arg \max_{y \in \Gamma(x)} f(x, y) \]

ex 1: \(f(x, y) = xy; \ X = [-1, 1]; \ \Gamma(x) = X. \)

\[G(x) = \begin{cases} \{-1\} & x < 0 \\ [-1, 1] & x = 0 \\ \{1\} & x > 0 \end{cases} \]
\[h(x) = |x| \]
ex 2: \(f(x, y) = xy^2 \), \(X = [-1, 1] \); \(\Gamma(x) = X \)

\[
G(x) = \begin{cases}
0 & x < 0 \\
[-1, 1] & x = 0 \\
\{ -1, 1 \} & x > 0
\end{cases}
\]

\(h(x) = \max \{ 0, x \} \)
Theorem of the Maximum

Define:

\[h(x) = \max_{y \in \Gamma(x)} f(x, y) \]

\[G(x) = \text{arg max}_{y \in \Gamma(x)} f(x, y) \]

\[= \{ y \in \Gamma(x) : h(x) = f(x, y) \} \]

Theorem. (Berge) Let \(X \subset \mathbb{R}^l \) and \(Y \subset \mathbb{R}^m \). Let \(f : X \times Y \rightarrow \mathbb{R} \) be continuous and \(\Gamma : X \rightarrow Y \) be compact-valued and continuous. Then \(h : X \rightarrow \mathbb{R} \) is continuous and \(G : X \rightarrow Y \) is non-empty, compact valued, and u.h.c.
lim max → max lim

Theorem. Suppose \(\{f_n(x, y)\} \) and \(f(x, y) \) are concave in \(y \) and \(f_n \to f \) in the sup-norm (uniformly). Define

\[
 g_n(x) = \arg \max_{y \in \Gamma(x)} f_n(x, y)
\]

\[
 g(x) = \arg \max_{y \in \Gamma(x)} f(x, y)
\]

then \(g_n(x) \to g(x) \) for all \(x \) (pointwise convergence); if \(X \) is compact then the convergence is uniform.
Monotonicity of \(v^* \)

Theorem. Assume that \(F(\cdot, y) \) is increasing, that \(\Gamma \) is increasing, i.e.

\[
\Gamma (x) \subset \Gamma (x')
\]

for \(x \leq x' \). Then, the unique fixed point \(v^* \) satisfying \(v^* = Tv^* \) is increasing. If \(F(\cdot, y) \) is strictly increasing, so is \(v^* \).
Proof

By the corollary of the CMThm, it suffices to show Tf is increasing if f is increasing. Let $x \leq x'$:

$$Tf(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\}$$

$$= F(x, y^*) + \beta f(y^*) \text{ for some } y^* \in \Gamma(x)$$

$$\leq F(x', y^*) + \beta f(y^*)$$

since $y^* \in \Gamma(x) \subset \Gamma(x')$

$$\leq \max_{y \in \Gamma(x')} \{F(x, y) + \beta f(y)\} = Tf(x')$$

If $F(\cdot, y)$ is strictly increasing

$$F(x, y^*) + \beta f(y^*) < F(x', y^*) + \beta f(y^*).$$
Concavity (or strict) concavity of v^*

Theorem. Assume that X is convex, Γ is concave, i.e. $y \in \Gamma(x)$, $y' \in \Gamma(x')$ implies that

$$y^\theta \equiv \theta y' + (1 - \theta) y \in \Gamma(\theta x' + (1 - \theta) x) \equiv \Gamma(x^\theta)$$

for any $x, x' \in X$ and $\theta \in (0, 1)$. Finally assume that F is concave in (x, y). Then, the fixed point v^* satisfying $v^* = Tv^*$ is concave in x. Moreover, if $F(\cdot, y)$ is strictly concave, so is v^*.

Introduction to Dynamic Optimization Nr. 21
Differentiability

- can’t use same strategy: space of differentiable functions is not closed
- many envelope theorems
- Formula: if \(h(x) \) is differentiable and \(y \) is interior then
 \[
 h'(x) = f_x(x, y)
 \]
 right value... but is \(h \) differentiable?
- one answer (Demand Theory) relies on f.o.c. and assuming twice differentiability of \(f \)
- won’t work for us since \(f = F(x, y) + \beta V(y) \) and we don’t even know if \(f \) is once differentiable! → going in circles
First a Lemma...

Lemma. Suppose \(v(x) \) is concave and that there exists \(w(x) \) such that \(w(x) \leq v(x) \) and \(v(x_0) = w(x_0) \) in some neighborhood \(D \) of \(x_0 \) and \(w \) is differentiable at \(x_0 \) (\(w'(x_0) \) exists) then \(v \) is differentiable at \(x_0 \) and \(v'(x_0) = w'(x_0) \).

Proof. Since \(v \) is concave it has at least one subgradient \(p \) at \(x_0 \):

\[
w(x) - w(x_0) \leq v(x) - v(x_0) \leq p \cdot (x - x_0)
\]

Thus a subgradient of \(v \) is also a subgradient of \(w \). But \(w \) has a unique subgradient equal to \(w'(x_0) \). \(\square \)
Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in \text{int}(X)$ and $g(x_0) \in \text{int}(\Gamma(x_0))$ then the fixed point of T, V, is differentiable at x and

$$V'(x) = F_x(x, g(x))$$

Proof. We know V is concave. Since $x_0 \in \text{int}(X)$ and $g(x_0) \in \text{int}(\Gamma(x_0))$ then $g(x_0) \in \text{int}(\Gamma(x))$ for $x \in D$ a neighborhood of x_0 then

$$W(x) = F(x, g(x_0)) + \beta V(g(x_0))$$

and then $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x(x_0, g(x_0))$ so the result follows from the lemma. □