17 Definitions

17.1 Random Sample

Let $X_1, ..., X_n$ be mutually independent RVs such that $f_{X_i}(x) = f_{X_j}(x) \forall i \neq j$. Denote $f_{X_i}(x) = f(x)$. Then, the collection $X_1, ..., X_n$ is called a random sample of size n from the population $f(x)$.

Examples:

- Rolling a die n times.
- Selecting 10 MIT students and measuring their height.

• Sampling with and without replacement: Sampling from a large population (“nearly independent”).

• Alternatively, this collection (or sampling), $X_1, ..., X_n$, is also called independent and identically distributed random variables with pmf/pdf $f(x)$, or iid sample for short.

• Note that the difference between X and x still holds (we continue to deal with random variables).

*Caution: These notes are not necessarily self-explanatory notes. They are to be used as a complement to (and not as a substitute for) the lectures.
17.2 Statistic

Let the RVs $X_1, X_2, ..., X_n$ be a random sample of size n from the population $f(x)$. Then, any real-valued function $T = r(X_1, X_2, ..., X_n)$ is called a statistic.

- Remember that $X_1, X_2, ..., X_n$ are RVs, and therefore T is a RV too, which can take any real value t with pmf/pdf $f_T(t)$.

17.3 Sample Mean

The sample mean, denoted by \bar{X}_n, is a statistic defined as the arithmetic average of the values in a random sample of size n.

$$\bar{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$ \hspace{1cm} (52)

17.4 Sample Variance

The sample variance, denoted by S^2_n, is a statistic defined as:

$$S^2_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$ \hspace{1cm} (53)

The sample standard deviation is the statistic defined by $S_n = \sqrt{S^2_n}$.

- Remember, the observed value of the statistic is denoted by lowercase letters. So, \bar{x}, s^2, and s denote observed values of the RVs \bar{X}, S^2, and S.

\footnote{The sample variance and the sample standard deviation are sometimes denoted by $\hat{\sigma}^2$ and $\hat{\sigma}$, respectively.}
18 Important Properties of the Sample Mean Distribution and the Sample Variance Distribution

18.1 Mean and Variance of \bar{X} and S^2

Let $X_1, ..., X_n$ be a random sample of size n from a population $f(x)$ with mean μ (finite) and variance σ^2 (finite). Then,

$$E(\bar{X}) = \mu, \quad E(S^2) = \sigma^2, \quad Var(\bar{X}) = \frac{\sigma^2}{n}, \quad \text{and} \quad Var_{n \to \infty}(S^2) \to 0. \quad (54)$$

- **Standard Error:** $\sqrt{Var(\bar{X})}$

Example 18.1. Show the first 3 statements of (54).
18.2 The Special Case of a Random Sample from a Normal Population

Let $X_1, ..., X_n$ be a random sample of size n from a $N(\mu, \sigma^2)$ population. Then,

a. \bar{X} and S^2 are independent random variables. \hspace{1cm} (55)
b. \bar{X} has a $N(\mu, \sigma^2/n)$ distribution. \hspace{1cm} (56)
c. $\frac{(n - 1)S^2}{\sigma^2}$ has a $\chi^2_{(n-1)}$ distribution. \hspace{1cm} (57)

Example 18.2. Show (56).

18.3 Limiting Results ($n \to \infty$)

These concepts are extensively used in econometrics.

18.3.1 (Weak) Law of Large Numbers

Let $X_1, ..., X_n$ be independent and identically distributed (iid) random variables with $E(X_i) = \mu$ (finite) and $\text{Var}(X_i) = \sigma^2$ (finite). Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then, for every $\varepsilon > 0$,
\[
\lim_{n \to \infty} P(|\bar{X}_n - \mu| < \varepsilon) = 1 .
\] (58)
This condition is denoted,
\[
\bar{X}_n \xrightarrow{p} \mu \quad (\bar{X}_n \text{ converges in probability to } \mu.)
\] (59)
Example 18.3. Prove (58) using Chebyshev’s inequality. Note that $S^2 \xrightarrow{p} \sigma^2$ can be proved in a similar way.

18.3.2 Central Limit Theorem (CLT)

Let X_1, \ldots, X_n be independent and identically distributed (iid) random variables with $E(X_i) = \mu$ (finite) and $\text{Var}(X_i) = \sigma^2$ (finite). Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then, for any value $x \in (-\infty, \infty)$,

$$
\lim_{n \to \infty} P\left(\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} < x \right) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx = \Phi(x) \quad (60)
$$

Where $\Phi(\cdot)$ is the cdf of a standard normal.

In words... From (56) we know that if the X_is are normally distributed, the sample mean statistic, \bar{X}_n, will also be normally distributed. (60) says that if $n \to \infty$, the function of the sample mean statistic, $\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$, will be normally distributed regardless of the distribution of the X_is.

In practice(1)... If n is sufficiently large, we can assume the distribution of a function of \bar{X}_n, $\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$, without knowing the underlining distribution of the random sample $f_{X_i}(x)$. [Very powerful result!]
In practice...Define \(Z = \frac{\sqrt{n}(\bar{x}_n - \mu)}{\sigma} \). If \(n \) is sufficiently large, then

\[
F_Z \left(\frac{\sqrt{n}(\bar{x}_n - \mu)}{\sigma} \right) \approx \Phi \left(\frac{\sqrt{n}(\bar{x}_n - \mu)}{\sigma} \right)
\]

\(\downarrow \)

\[
\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \overset{a}{\sim} N(0, 1) \quad \text{or} \quad \bar{X}_n \overset{a}{\sim} N(\mu, \sigma^2/n) \quad \text{(a : for approximately)}
\]

...regardless of the pmf/pdf \(f_{X_i}(x) \)!

- The larger the value of \(n \) is, the better the approximation. But, how much is “sufficiently large”? There is no straightforward rule. It will depend on the underlying distribution \(f_{X_i}(x) \). The less bell-shaped \(f_{X_i}(x) \) is, the larger the \(n \) required. Having said this, some authors suggest the following rule of thumb: \(n \geq 30 \).

- Magnifying glass (see simulations).

Example 18.4. An astronomer is interested in measuring the distance from his observatory to a distant star (in light years). Due to changing atmospheric conditions and measuring errors, each time a measurement is made it will not yield the exact distance. As a result, the astronomer plans to take several measurements and then use the average as his estimated distance. He believes that measurement values are iid with mean \(d \) (the actual distance) and variance 4 (light years). How many measurements does he need to perform to be reasonably sure that his estimated distance is accurate within \(\pm 0.5 \) light years?