MIT 6.035
Foundations of Dataflow Analysis

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?
Program Representation

• Control Flow Graph
 – Nodes N – statements of program
 – Edges E – flow of control
 • pred(n) = set of all predecessors of n
 • succ(n) = set of all successors of n
 – Start node \(n_0 \)
 – Set of final nodes \(N_{\text{final}} \)
Program Points

- One program point before each node
- One program point after each node
- Join point – point with multiple predecessors
- Split point – point with multiple successors
Basic Idea

• Information about program represented using values from algebraic structure called lattice
• Analysis produces lattice value for each program point
• Two flavors of analysis
 – Forward dataflow analysis
 – Backward dataflow analysis
Forward Dataflow Analysis

• Analysis propagates values forward through control flow graph with flow of control
 – Each node has a transfer function \(f \)
 • Input – value at program point before node
 • Output – new value at program point after node
 – Values flow from program points after predecessor nodes to program points before successor nodes
 – At join points, values are combined using a merge function

• Canonical Example: Reaching Definitions
Backward Dataflow Analysis

• Analysis propagates values backward through control flow graph against flow of control
 – Each node has a transfer function \(f \)
 • Input – value at program point after node
 • Output – new value at program point before node
 – Values flow from program points before successor nodes to program points after predecessor nodes
 – At split points, values are combined using a merge function
 – Canonical Example: Live Variables
Partial Orders

• Set P
• Partial order \leq such that $\forall x,y,z \in P$

 – $x \leq x$ (reflexive)

 – $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)

 – $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

• Can use partial order to define

 – Upper and lower bounds

 – Least upper bound

 – Greatest lower bound
Upper Bounds

• If $S \subseteq P$ then
 – $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$
 – $x \in P$ is the least upper bound of S if
 • x is an upper bound of S, and
 • $x \leq y$ for all upper bounds y of S
 – \lor - join, least upper bound, lub, supremum, sup
 • $\lor S$ is the least upper bound of S
 • $x \lor y$ is the least upper bound of $\{x,y\}$
Lower Bounds

• If \(S \subseteq P \) then

 – \(x \in P \) is a lower bound of \(S \) if \(\forall y \in S. \ x \leq y \)

 – \(x \in P \) is the greatest lower bound of \(S \) if

 • \(x \) is a lower bound of \(S \), and

 • \(y \leq x \) for all lower bounds \(y \) of \(S \)

 – \(\land \) - meet, greatest lower bound, glb, infimum, inf

 • \(\land S \) is the greatest lower bound of \(S \)

 • \(x \land y \) is the greatest lower bound of \(\{x,y\} \)
Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z < y$ implies $x = z$
- Conceptually, y covers x if there are no elements between x and y
Example

- $P = \{000, 001, 010, 011, 100, 101, 110, 111\}$ (standard boolean lattice, also called hypercube)
- $x \leq y$ if $(x \text{ bitwise and } y) = x$

Hasse Diagram

- If y covers x
- Line from y to x
- y above x in diagram
Lattices

• If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.

• If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.

• All finite lattices are complete
Lattices

- If $x \land y$ and $x \lor y$ exist for all $x, y \in P$, then P is a lattice.
- If $\land S$ and $\lor S$ exist for all $S \subseteq P$, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
 - Integers I
 - For any $x, y \in I$, $x \lor y = \max(x, y)$, $x \land y = \min(x, y)$
 - But $\lor I$ and $\land I$ do not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice
Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\bot)
Connection Between \leq, \wedge, and \vee

- The following 3 properties are equivalent:
 - $x \leq y$
 - $x \vee y = y$
 - $x \wedge y = x$

- Will prove:
 - $x \leq y$ implies $x \vee y = y$ and $x \wedge y = x$
 - $x \vee y = y$ implies $x \leq y$
 - $x \wedge y = x$ implies $x \leq y$

- Then by transitivity, can obtain
 - $x \vee y = y$ implies $x \wedge y = x$
 - $x \wedge y = x$ implies $x \vee y = y$
Connecting Lemma Proofs

• Proof of $x \leq y$ implies $x \lor y = y$
 – $x \leq y$ implies y is an upper bound of $\{x, y\}$.
 – Any upper bound z of $\{x, y\}$ must satisfy $y \leq z$.
 – So y is least upper bound of $\{x, y\}$ and $x \lor y = y$

• Proof of $x \leq y$ implies $x \land y = x$
 – $x \leq y$ implies x is a lower bound of $\{x, y\}$.
 – Any lower bound z of $\{x, y\}$ must satisfy $z \leq x$.
 – So x is greatest lower bound of $\{x, y\}$ and $x \land y = x$
Connecting Lemma Proofs

• Proof of $x \lor y = y$ implies $x \leq y$
 – y is an upper bound of $\{x, y\}$ implies $x \leq y$
• Proof of $x \land y = x$ implies $x \leq y$
 – x is a lower bound of $\{x, y\}$ implies $x \leq y$
Lattices as Algebraic Structures

• Have defined \lor and \land in terms of \leq
• Will now define \leq in terms of \lor and \land
 – Start with \lor and \land as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 – Will define \leq using \lor and \land
 – Will show that \leq is a partial order
• Intuitive concept of \lor and \land as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$
 \[
x = x \land (x \lor y) \quad \text{(by absorption)}
 = x \land y \quad \text{(by assumption)}
\]
- Proof of $x \land y = x$ implies $y = x \lor y$
 \[
y = y \lor (y \land x) \quad \text{(by absorption)}
 = y \lor (x \land y) \quad \text{(by commutativity)}
 = y \lor x \quad \text{(by assumption)}
 = x \lor y \quad \text{(by commutativity)}
\]
Properties of \leq

- Define $x \leq y$ if $x \lor y = y$
- Proof of transitive property. Must show that $x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

\[
x \lor y = y \text{ and } y \lor z = z \implies x \lor z = z
\]

\[
x \lor z = x \lor (y \lor z) \quad \text{(by assumption)}
\]

\[
= (x \lor y) \lor z \quad \text{(by associativity)}
\]

\[
= y \lor z \quad \text{(by assumption)}
\]

\[
= z \quad \text{(by assumption)}
\]
Properties of \leq

• Proof of asymmetry property. Must show that $x \vee y = y$ and $y \vee x = x$ implies $x = y$

 $x = y \vee x$ (by assumption)

 $= x \vee y$ (by commutativity)

 $= y$ (by assumption)

• Proof of reflexivity property. Must show that $x \vee x = x$

 $x \vee x = x$ (by idempotence)
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 - $x \lor y = \sup \{x, y\}$
 - $x \land y = \inf \{x, y\}$
Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$

\[
\begin{align*}
 u &= x \lor u \quad \text{(by assumption)} \\
 &= x \lor (y \lor u) \quad \text{(by assumption)} \\
 &= (x \lor y) \lor u \quad \text{(by associativity)}
\end{align*}
\]
Proof of \(x \wedge y = \inf \{x, y\} \)

- Consider any lower bound \(l \) for \(x \) and \(y \).
- Given \(x \wedge l = l \) and \(y \wedge l = l \), must show \(l \leq x \wedge y \), i.e., \((x \wedge y) \wedge l = l \)

 \[
 l = x \wedge l \quad \text{(by assumption)}

 = x \wedge (y \wedge l) \quad \text{(by assumption)}

 = (x \wedge y) \wedge l \quad \text{(by associativity)}
 \]
Chains

• A set S is a chain if $\forall x, y \in S. y \leq x$ or $x \leq y$
• P has no infinite chains if every chain in P is finite
• P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$
Application to Dataflow Analysis

• Dataflow information will be lattice values
 – Transfer functions operate on lattice values
 – Solution algorithm will generate increasing sequence of values at each program point
 – Ascending chain condition will ensure termination

• Will use \lor to combine values at control-flow join points
Transfer Functions

- Transfer function $f: P \rightarrow P$ for each node in control flow graph
- f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: \mathbb{P} \rightarrow \mathbb{P}$

- Identity function $i \in F$
- F must be closed under composition:
 \[\forall f, g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F \]
- Each $f \in F$ must be monotone:
 \[x \leq y \text{ implies } f(x) \leq f(y) \]
- Sometimes all $f \in F$ are distributive:
 \[f(x \lor y) = f(x) \lor f(y) \]
- Distributivity implies monotonicity
Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$

 $f(y) = f(x \lor y)$ \hspace{1cm} (by assumption)

 $= f(x) \lor f(y)$ \hspace{1cm} (by distributivity)
Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control
Forward Dataflow Analysis

- Simulates execution of program forward with flow of control

- For each node n, have
 - in_n – value at program point before n
 - out_n – value at program point after n
 - f_n – transfer function for n (given in_n, computes out_n)

- Require that solution satisfy
 - $\forall n. \text{out}_n = f_n(\text{in}_n)$
 - $\forall n \neq n_0. \text{in}_n = \vee \{ \text{out}_m . m \text{ in pred(n) } \}$
 - $\text{in}_{n_0} = I$
 - Where I summarizes information at start of program
Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

\[\text{out}_n := f_n(\text{in}_n) \]
\[\text{in}_n := \lor \{ \text{out}_m . m \text{ in pred}(n) \} \]

• Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each n do $\text{out}_n := f_n(\bot)$

$\text{in}_{n_0} := I$; $\text{out}_{n_0} := f_{n_0}(I)$

worklist := $N - \{ n_0 \}$

while worklist $\neq \emptyset$ do

 remove a node n from worklist

 $\text{in}_n := \lor \{ \text{out}_m : m \in \text{pred}(n) \}$

 $\text{out}_n := f_n(\text{in}_n)$

 if out_n changed then
 worklist := worklist \cup succ(n)
Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node n, set $out_n := f_n(in_n)$
 Algorithm ensures that $out_n = f_n(in_n)$
• Whenever out_m changes, put $succ(m)$ on worklist.
 Consider any node $n \in succ(m)$. It will eventually come off worklist and algorithm will set
 $$in_n := \lor \{ out_m \cdot m \text{ in } pred(n) \}$$
 to ensure that $in_n = \lor \{ out_m \cdot m \text{ in } pred(n) \}$
• So final solution will satisfy dataflow equations
Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without ascending chain property, use widening operator
Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Reaching Definitions

- $P = \text{powerset of set of all definitions in program (all subsets of set of definitions in program)}$
- $\lor = \cup$ (order is \subseteq)
- $\bot = \emptyset$
- $I = \text{in}_{n_0} = \bot$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions
 - $f(x) = \text{GEN} \cup (x-\text{KILL})$
Does Reaching Definitions Framework Satisfy Properties?

- \(\subseteq \) satisfies conditions for \(\leq \)
 - \(x \subseteq y \) and \(y \subseteq z \) implies \(x \subseteq z \) (transitivity)
 - \(x \subseteq y \) and \(y \subseteq x \) implies \(y = x \) (asymmetry)
 - \(x \subseteq x \) (idempotence)

- \(F \) satisfies transfer function conditions
 - \(\lambda x. \emptyset \cup (x - \emptyset) = \lambda x. x \in F \) (identity)
 - Will show \(f(x \cup y) = f(x) \cup f(y) \) (distributivity)
 \[
 f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b)) \\
 = a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b) \\
 = f(x \cup y)
 \]
Does Reaching Definitions Framework Satisfy Properties?

• What about composition?
 – Given \(f_1(x) = a_1 \cup (x-b_1) \) and \(f_2(x) = a_2 \cup (x-b_2) \)
 – Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x - b) \)

\[
f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)
= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))
= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))
= (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))
\]

– Let \(a = (a_1 \cup (a_2 - b_1)) \) and \(b = b_2 \cup b_1 \)
– Then \(f_1(f_2(x)) = a \cup (x - b) \)
General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties
Available Expressions

- \(P = \text{powerset of set of all expressions in program (all subsets of set of expressions)} \)
- \(\lor = \cap \) (order is \(\supseteq \))
- \(\bot = P \)
- \(I = \text{in}_{n_0} = \emptyset \)
- \(F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \)
 - \(b \) is set of expressions that node kills
 - \(a \) is set of expressions that node generates
- Another GEN/KILL analysis
Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.
Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node \(n \), have
 - \(\text{in}_n \) – value at program point before \(n \)
 - \(\text{out}_n \) – value at program point after \(n \)
 - \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
- Require that solution satisfies
 - \(\forall n. \text{in}_n = f_n(\text{out}_n) \)
 - \(\forall n \notin N_{\text{final}}. \text{out}_n = \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)
 - \(\forall n \in N_{\text{final}} = \text{out}_n = O \)
 - Where \(O \) summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each n do \(\text{in}_n := f_n(\bot) \)
for each \(n \in N_{\text{final}} \) do \(\text{out}_n := O; \text{in}_n := f_n(O) \)
worklist := \(N - N_{\text{final}} \)
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{out}_n := \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)
 \(\text{in}_n := f_n(\text{out}_n) \)
 if \(\text{in}_n \) changed then
 worklist := worklist \cup \text{pred}(n) \)
Live Variables

- $P = \text{powerset of set of all variables in program}$
 (all subsets of set of variables in program)
- $\lor = \cup$ (order is \subseteq)
- $\perp = \emptyset$
- $O = \emptyset$
- $F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads
Meaning of Dataflow Results

- Concept of program state s for control-flow graphs
 - Program point n where execution located
 (n is node that will execute next)
 - Values of variables in program
- Each execution generates a trajectory of states:
 - $s_0; s_1; \ldots; s_k$, where each $s_i \in ST$
 - s_{i+1} generated from s_i by executing basic block to
 - Update variable values
 - Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function $AF:ST \rightarrow P$
- Correctness condition: require that for all states s
 $AF(s) \leq in_n$
 where n is the next statement to execute in state s
Sign Analysis Example

• Sign analysis - compute sign of each variable v
• Base Lattice: $P = \text{flat lattice on } \{-,0,+\}$

- TOP

- BOT

• Actual lattice records a value for each variable
 – Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$
Interpretation of Lattice Values

• If value of v in lattice is:
 – BOT: no information about sign of v
 – -: variable v is negative
 – 0: variable v is 0
 – +: variable v is positive
 – TOP: v may be positive or negative

• What is abstraction function AF?
 – $AF([x_1,\ldots,x_n]) = [\text{sign}(x_1), \ldots, \text{sign}(x_n)]$
 – Where $\text{sign}(x) = 0$ if $x = 0$, + if $x > 0$, - if $x < 0$
Operation \(\otimes \) on Lattice

<table>
<thead>
<tr>
<th>(\otimes)</th>
<th>BOT</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>0</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>
Transfer Functions

• If n of the form $v = c$

 - $f_n(x) = x[v\rightarrow+]$ if c is positive
 - $f_n(x) = x[v\rightarrow0]$ if c is 0
 - $f_n(x) = x[v\rightarrow-]$ if c is negative

• If n of the form $v_1 = v_2 * v_3$

 - $f_n(x) = x[v_1\rightarrow x[v_2] \otimes x[v_3]]$

• $I = \text{TOP}$

 (uninitialized variables may have any sign)
Example

\[a = 1 \]

\[b = -1 \]

\[b = 1 \]

\[c = a \times b \]
Imprecision In Example

Abstraction Imprecision:
[a→1] abstracted as [a→+]

[a→+]

b = -1

[a→+, b→-]

[a→+, b→TOP]

Control Flow Imprecision:
[b→TOP] summarizes results of all executions. In any execution state s, AF(s)[b]≠TOP

a = 1

b = 1

c = a*b
General Sources of Imprecision

• Abstraction Imprecision
 – Concrete values (integers) abstracted as lattice values (-, 0, and +)
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – One lattice value for all possible control flow paths
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \lor moves up in lattice to combine values from different execution paths
 – Typically if $x \leq y$, then x is more precise than y
Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
 - Abstracted by computing joins of different paths
Abstraction Function

• AF(s)[v] = sign of v
 - AF(n,[a→5, b→0, c→-2]) = [a→+, b→0, c→-]

• Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution

• Correctness condition:
 - ∀ v. AF(s)[v] ≤ in_n[v] (n is node for s)
 - Reflects possibility of imprecision
Abstraction Function Soundness

• Will show
 \[\forall v. \ AF(s)[v] \leq \text{in}_n[v] \ (n \ is \ node \ for \ s) \]
 by induction on length of computation that produced \(s \)

• Base case:
 – \[\forall v. \ \text{in}_{n0}[v] = \text{TOP}, \ which \ implies \ that \]
 – \[\forall v. \ AF(s)[v] \leq \text{TOP} \]
Induction Step

• Assume ∀ v. AF(s)[v] ≤ in_n[v] for computations of length k
• Prove for computations of length k+1
• Proof:
 – Given s (state), n (node to execute next), and in_n
 – Find p (the node that just executed), s_p (the previous state), and in_p
 – By induction hypothesis ∀ v. AF(s_p)[v] ≤ in_p[v]
 – Case analysis on form of n
 • If n of the form v = c, then
 – s[v] = c and out_p[v] = sign(c), so
 AF(s)[v] = sign(c) = out_p[v] ≤ in_n[v]
 – If x ≠ v, s[x] = s_p[x] and out_p[x] = in_p[x], so
 AF(s)[x] = AF(s_p)[x] ≤ in_p[x] = out_p[x] ≤ in_n[x]
 • Similar reasoning if n of the form v_1 = v_2 * v_3
Augmented Execution States

• Abstraction functions for some analyses require augmented execution states
 – Reaching definitions: states are augmented with definition that created each value
 – Available expressions: states are augmented with expression for each value
Meet Over Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?

• Consider a path \(p = n_0, n_1, \ldots, n_k, n \) to a node \(n \)
 (note that for all \(i \) \(n_i \in \text{pred}(n_{i+1}) \))

• The solution must take this path into account:
 \[
 f_p(\bot) = (f_{n_k}(f_{n_{k-1}}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq \text{in}_n
 \]

• So the solution must have the property that
 \[
 \bigvee \{f_p(\bot) \cdot p \text{ is a path to } n\} \leq \text{in}_n
 \]
 and ideally
 \[
 \bigvee \{f_p(\bot) \cdot p \text{ is a path to } n\} = \text{in}_n
 \]
Soundness Proof of Analysis Algorithm

- **Property to prove:**

 For all paths p to n, \(f_p(\bot) \leq in_n \)

- **Proof is by induction on length of p**
 - Uses monotonicity of transfer functions
 - Uses following lemma

- **Lemma:**

 Worklist algorithm produces a solution such that

 \[f_n(in_n) = out_n \]

 if \(n \in \text{pred}(m) \) then \(out_n \leq in_m \)
Proof

• Base case: \(p \) is of length 1
 – Then \(p = n_0 \) and \(f_p(\bot) = \bot = in_{n_0} \)

• Induction step:
 – Assume theorem for all paths of length \(k \)
 – Show for an arbitrary path \(p \) of length \(k+1 \)
Induction Step Proof

• $p = n_0, \ldots, n_k, n$
• Must show $f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_n$
 – By induction $(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_{nk}$
 – Apply f_k to both sides, by monotonicity we get $f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq f_k(in_{nk})$
 – By lemma, $f_k(in_{nk}) = out_{nk}$
 – By lemma, $out_{nk} \leq in_n$
 – By transitivity, $f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots)) \leq in_n$
Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 \[
 \bigvee\{ f_p (\bot) \mid p \text{ is a path to } n \} = \text{in}_n
 \]
Lack of Distributivity Example

• Constant Calculator
• Flat Lattice on Integers

Actual lattice records a value for each variable
 – Example element: \([a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\)
Transfer Functions

- If n of the form $v = c$
 - $f_n(x) = x[v \rightarrow c]$
- If n of the form $v_1 = v_2 + v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$
- Lack of distributivity
 - Consider transfer function f for $c = a + b$
 - $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5]$
 - $f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]$
Lack of Distributivity Anomaly

\[
\begin{align*}
\text{a} &= 2 & \text{a} &= 3 \\
\text{b} &= 3 & \text{b} &= 2 \\
[a \rightarrow 2, \ b \rightarrow 3] & & [a \rightarrow 3, \ b \rightarrow 2] \\
[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}] & & \text{Lack of Distributivity Imprecision:} \\
\text{c} &= \text{a} + \text{b} & [a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow 5] \text{ more precise} \\
[a \rightarrow \text{TOP}, \ b \rightarrow \text{TOP}, \ c \rightarrow \text{TOP}] & & \\
\end{align*}
\]

What is the meet over all paths solution?
How to Make Analysis Distributive

• Keep combinations of values on different paths

\[\begin{align*}
\text{a} &= 2 & \text{a} &= 3 \\
\text{b} &= 3 & \text{b} &= 2 \\
\{[\text{a} \to 2, \text{b} \to 3]\} & \quad \{[\text{a} \to 3, \text{b} \to 2]\} \\
\{[\text{a} \to 2, \text{b} \to 3], [\text{a} \to 3, \text{b} \to 2]\} \\
\text{c} &= \text{a} + \text{b} \\
\{[\text{a} \to 2, \text{b} \to 3, \text{c} \to 5], [\text{a} \to 3, \text{b} \to 2, \text{c} \to 5]\}
\end{align*} \]
Issues

• Basically simulating all combinations of values in all executions
 – Exponential blowup
 – Nontermination because of infinite ascending chains
• Nontermination solution
 – Use widening operator to eliminate blowup
 (can make it work at granularity of variables)
 – Loses precision in many cases
Multiple Fixed Points

• Dataflow analysis generates least fixed point
• May be multiple fixed points
• Available expressions example

a = x + y

i == 0

nop

b = x + y;

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
Pessimistic vs. Optimistic Analyses

• Available expressions is optimistic
 (for common sub-expression elimination)
 – Assumes expressions are available at start of analysis
 – Analysis eliminates all that are not available
 – If analysis result \(in_n \leq e \), can use \(e \) for CSE
 – Cannot stop analysis early and use current result
• Live variables is pessimistic (for dead code elimination)
 – Assumes all variables are live at start of analysis
 – Analysis finds variables that are dead
 – If \(e \leq \) analysis result \(in_n \), can use \(e \) for dead code elimination
 – Can stop analysis early and use current result
• Formal dataflow setup same for both analyses
• Optimism/pessimism depends on intended use
Summary

• Formal dataflow analysis framework
 – Lattices, partial orders
 – Transfer functions, joins and splits
 – Dataflow equations and fixed point solutions

• Connection with program
 – Abstraction function AF: S → P
 – For any state s and program point n, AF(s) ≤ in_n
 – Meet over all paths solutions, distributivity