MIT 6.035
Parse Table Construction

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>$</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>$</td>
<td>X</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>$</td>
<td>goto s1</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>$</td>
<td>goto s3</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Implements finite state control
- At each step, look up
 - Table[top of state stack] [input symbol]
- Then carry out the action
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>$</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>error</td>
<td>accept</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5</td>
<td>error</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4</td>
<td>error</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2)</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3)</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>

- **Shift to s\(n\)**
 - Push input token into the symbol stack
 - Push s\(n\) into state stack
 - Advance to next input symbol
Parse Tables (Review)

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error goto s1</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>error accept</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5 error goto s3</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4 error</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2) reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3) reduce (3)</td>
</tr>
</tbody>
</table>

- **Reduce (n)**
 - Pop both stacks as many times as the number of symbols on the RHS of rule n
 - Push LHS of rule n into symbol stack
Parser Generators and Parse Tables

- Parser generator (YACC, CUP)
 - Given a grammar
 - Produces a (shift-reduce) parser for that grammar
- Process grammar to synthesize a DFA
 - Contains states that the parser can be in
 - State transitions for terminals and non-terminals
- Use DFA to create an parse table
- Use parse table to generate code for parser
Example

• The grammar

\[S \rightarrow X \; \$ \quad (1) \]
\[X \rightarrow (X) \quad (2) \]
\[X \rightarrow () \quad (3) \]
DFA States Based on Items

- We need to capture how much of a given production we have scanned so far

\[X \rightarrow (\ X \) \]

Are we here? Or here? Or here? Or here?
Items

- We need to capture how much of a given production we have scanned so far

\[X \rightarrow (X) \]

- Production Generates 4 items
 - \(X \rightarrow (X) \)
 - \(X \rightarrow (\cdot X) \)
 - \(X \rightarrow (X\cdot) \)
 - \(X \rightarrow (X)\cdot \)
Example of Items

- The grammar

 \[
 S \rightarrow X \ \$ \\
 X \rightarrow (X) \\
 X \rightarrow (\) \\
 \]

- Items

 \[
 S \rightarrow \cdot \ X\$ \\
 S \rightarrow X\cdot \ \$ \\
 X \rightarrow \cdot \ (X) \\
 X \rightarrow (\cdot \ X) \\
 X \rightarrow (X\cdot) \\
 X \rightarrow (X) \cdot \\
 X \rightarrow \cdot \ (\) \\
 X \rightarrow (\cdot) \\
 X \rightarrow (\) \cdot
 \]
Notation

• If write production as $A \rightarrow \alpha c \beta$
 • α is sequence of grammar symbols, can be terminals and nonterminals in sequence
 • c is terminal
 • β is sequence of grammar symbols, can be terminals and nonterminals in sequence
• If write production as $A \rightarrow \alpha \cdot B \beta$
 • α, β as above
 • B is a single grammar symbol, either terminal or nonterminal
Key idea behind items

- States correspond to sets of items
- If the state contains the item \(A \rightarrow \alpha \cdot c \beta \)

 Parser is expecting to eventually reduce using the production \(A \rightarrow \alpha \cdot c \beta \)

 - Parser has already parsed an \(\alpha \)
 - It expects the input may contain \(c \), then \(\beta \)
- If the state contains the item \(A \rightarrow \alpha \cdot \)

 - Parser has already parsed an \(\alpha \)
 - Will reduce using \(A \rightarrow \alpha \)
- If the state contains the item \(S \rightarrow \alpha \cdot $ \)

 and the input buffer is empty
 - Parser accepts input
Correlating Items and Actions

- If the current state contains the item $A \rightarrow \alpha \cdot c \beta$ and the current symbol in the input buffer is c:
 - Parser shifts c onto stack
 - Next state will contain $A \rightarrow \alpha c \cdot \beta$

- If the current state contains the item $A \rightarrow \alpha$:
 - Parser reduces using $A \rightarrow \alpha$

- If the current state contains the item $S \rightarrow \alpha \cdot \$ and the input buffer is empty:
 - Parser accepts input
Closure() of a set of items

- Closure finds all the items in the same “state”
- Fixed Point Algorithm for Closure(I)
 - Every item in I is also an item in Closure(I)
 - If $A \rightarrow \alpha B \beta$ is in Closure(I) and $B \rightarrow \gamma$ is an item, then add $B \rightarrow \bullet \gamma$ to Closure(I)
 - Repeat until no more new items can be added to Closure(I)
Example of Closure

- Closure(\{X \rightarrow (\cdot X)\})

\[
\begin{align*}
X & \rightarrow (\cdot X) \\
X & \rightarrow \cdot (X) \\
X & \rightarrow \cdot ()
\end{align*}
\]

- Items

\[
\begin{align*}
S & \rightarrow \cdot X$ \\
S & \rightarrow X\cdot $ \\
X & \rightarrow \cdot (X) \\
X & \rightarrow (\cdot X) \\
X & \rightarrow (X\cdot) \\
X & \rightarrow (X)\cdot \\
X & \rightarrow \cdot () \\
X & \rightarrow (.) \\
X & \rightarrow ()\cdot
\end{align*}
\]
Another Example

- closure(\{S \rightarrow \cdot X\}$\})

\[
\begin{align*}
S & \rightarrow \cdot X\$ \\
X & \rightarrow \cdot (X) \\
X & \rightarrow \cdot ()
\end{align*}
\]

- Items

\[
\begin{align*}
S & \rightarrow \cdot X\$ \\
S & \rightarrow X\cdot \$ \\
X & \rightarrow \cdot (X) \\
X & \rightarrow (\cdot X) \\
X & \rightarrow (X\cdot) \\
X & \rightarrow (X) \cdot \\
X & \rightarrow \cdot () \\
X & \rightarrow (.) \\
X & \rightarrow () \cdot
\end{align*}
\]
Goto() of a set of items

- Goto finds the new state after consuming a grammar symbol while at the current state

- Algorithm for Goto(I, X)
 where I is a set of items
 and X is a grammar symbol

\[
\text{Goto}(I, X) = \text{Closure}(\{ A \rightarrow \alpha X \beta \mid A \rightarrow \alpha \beta \text{ in } I \})
\]

- goto is the new set obtained by “moving the dot” over X
Example of Goto

- Goto (\{ \{X \rightarrow (\cdot X)\}, X\})

\hspace{1cm}
\begin{align*}
X & \rightarrow (X \cdot) \\
\end{align*}

- Items

\begin{align*}
S & \rightarrow \cdot X \$
S & \rightarrow X \cdot \$
X & \rightarrow \cdot (X)
X & \rightarrow (\cdot X)
X & \rightarrow (X \cdot)
X & \rightarrow (X) \cdot
X & \rightarrow \cdot ()
X & \rightarrow ()
X & \rightarrow () \cdot
\end{align*}
Another Example of Goto

- **Goto** (`{X → •(X)}`, ())

- **Items**

 \[
 \begin{align*}
 S & \rightarrow \cdot X$ \\
 S & \rightarrow X\cdot $ \\
 X & \rightarrow \cdot (X) \\
 X & \rightarrow (\cdot X) \\
 X & \rightarrow (X\cdot) \\
 X & \rightarrow (X)\cdot \\
 X & \rightarrow \cdot () \\
 X & \rightarrow (\cdot) \\
 X & \rightarrow ()\cdot \\
 \end{align*}
 \]
Building the DFA states

- Start with the item $S \rightarrow \cdot \beta \$
- Create the first state to be $\text{Closure}(\{ S \rightarrow \cdot \beta \$\})$
- Pick a state I
 - for each item $A \rightarrow \alpha \cdot X \beta$ in I
 - find $\text{Goto}(I, X)$
 - if $\text{Goto}(I, X)$ is not already a state, make one
 - Add an edge X from state I to $\text{Goto}(I, X)$ state
- Repeat until no more additions possible
DFA Example

\[S \rightarrow X \cdot $ \]
\[X \rightarrow \cdot (X) \]
\[X \rightarrow \cdot () \]

\[S \rightarrow X \] $ \]
\[X \rightarrow (X) \]
\[X \rightarrow () \]
Constructing A Parse Engine

• Build a DFA - DONE

• Construct a parse table using the DFA
Creating the parse tables

• For each state

 • Transition to another state using a terminal symbol is a shift to that state (shift to sn)
 • Transition to another state using a non-terminal is a goto to that state (goto sn)
 • If there is an item A → α in the state do a reduction with that production for all terminals (reduce k)
Building Parse Table Example

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s2</td>
<td>error goto s1</td>
</tr>
<tr>
<td>s1</td>
<td>error</td>
<td>accept</td>
</tr>
<tr>
<td>s2</td>
<td>shift to s2</td>
<td>shift to s5</td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>shift to s4</td>
</tr>
<tr>
<td>s4</td>
<td>reduce (2)</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>s5</td>
<td>reduce (3)</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>

Production Rules:

- $S \rightarrow X \cdot$
- $X \rightarrow \cdot (\cdot)$
- $X \rightarrow \cdot (\cdot)$
- $X \rightarrow \cdot (X)$
- $X \rightarrow \cdot (\cdot)$
- $S \rightarrow X \cdot$
- $X \rightarrow (X)$
- $X \rightarrow (\cdot)$
- $X \rightarrow (X)$
- $X \rightarrow (\cdot)$
Potential Problem

- No lookahead
- Vulnerable to unnecessary conflicts
 - Shift/Reduce Conflicts (may reduce too soon in some cases)
 - Reduce/Reduce Conflicts
- Solution: Lookahead
 - Only for reductions - reduce only when next symbol can occur after nonterminal from production
 - Systematic lookahead, split states based on next symbol, action is always a function of next symbol
 - Can generalize to look ahead multiple symbols
Reduction-Only Lookahead Parsing

- If a state contains $A \rightarrow \beta$.
- Reduce by $A \rightarrow \beta$ only if next input symbol can follow A in some derivation.
- Example Grammar

 $$S \rightarrow X \$ $$
 $$X \rightarrow a $$
 $$X \rightarrow a \ b$$
Parser Without Lookahead

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s1</td>
<td>s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2)</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td></td>
</tr>
</tbody>
</table>

Grammar

- **S → \cdot X \cdot \$**
- **X → \cdot a**
- **X → \cdot a \cdot b**
- **S → X \cdot \$**
- **X → a \cdot**
- **X → a \cdot b**
- **X → a b**
- **S → X \$**
- **X → a**
- **X → a b**
Creating parse tables with reduction-only lookahead

• For each state
 • Transition to another state using a terminal symbol is a shift to that state (*shift to sn*) (same as before)
 • Transition to another state using a non-terminal is a goto that state (*goto sn*) (same as before)
 • If there is an item \(X \rightarrow \alpha \) in the state do a reduction with that production whenever the current input symbol \(T \) may follow \(X \) in some derivation (more precise than before)

• Eliminates useless reduce actions
New Parse Table

b never follows X in any derivation
resolve shift/reduce conflict to shift

<table>
<thead>
<tr>
<th>State</th>
<th>a ACTION</th>
<th>b ACTION</th>
<th>$ ACTION</th>
<th>Goto ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>shift to s1</td>
<td>error</td>
<td>error</td>
<td>goto s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2)</td>
<td>shift to s2</td>
<td>reduce(2)</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3)</td>
<td>reduce(3)</td>
<td>reduce(3)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>error</td>
<td>error</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>

```
S → X \cdot S
X → \cdot a
X → \cdot a \cdot b

S \rightarrow X \cdot S
\]

S \rightarrow X \cdot S
\]

S \rightarrow X \cdot S
\]

X \rightarrow a \cdot b
S \rightarrow X \cdot S
```
More General Lookahead

- Items contain potential lookahead information, resulting in more states in finite state control.
- Item of the form \([A \rightarrow \alpha \cdot \beta \cdot T]\) says:
 - The parser has parsed an \(\alpha\).
 - If it parses a \(\beta\) and the next symbol is \(T\).
 - Then parser should reduce by \(A \rightarrow \alpha \beta\).

- In addition to current parser state, all parser actions are function of lookahead symbols.
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques

- L - parse from left to right
- R - parse from right to left
Terminology

- Many different parsing techniques
 - Each can handle some set of CFGs
 - Categorization of techniques

- L - leftmost derivation
- R - rightmost derivation
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques

• Number of lookahead characters
Terminology

• Many different parsing techniques
 • Each can handle some set of CFGs
 • Categorization of techniques

• Examples: LL(0), LR(1)

• This lecture
 • LR(0) parser
 • SLR parser – LR(0) parser augmented with follow information
Summary

- Parser generators – given a grammar, produce a parser
- Standard technique
 - Automatically build a pushdown automaton
 - Obtain a shift-reduce parser
 - Finite state control plus push down stack
 - Table driven implementation
- Conflicts: Shift/Reduce, Reduce/Reduce
- Use of lookahead to eliminate conflicts
 - SLR parsing (eliminates useless reduce actions)
 - LR(k) parsing (lookahead throughout parser)
Follow() sets in SLR Parsing

For each non terminal A, Follow(A) is the set of terminals that can come after A in some derivation.
Constraints for Follow()

• $ \in \text{Follow}(S)$, where S is the start symbol
• If $A \rightarrow \alpha B \beta$ is a production then $\text{First}(\beta) \subseteq \text{Follow}(B)$
• If $A \rightarrow \alpha B$ is a production then $\text{Follow}(A) \subseteq \text{Follow}(B)$
• If $A \rightarrow \alpha B \beta$ is a production and β derives ϵ then $\text{Follow}(A) \subseteq \text{Follow}(B)$
Algorithm for Follow

for all nonterminals NT

 $\text{Follow}(NT) = {}$

$\text{Follow}(S) = \{ \$ \}$

while Follow sets keep changing

 for all productions $A \rightarrow \alpha B \beta$

 $\text{Follow}(B) = \text{Follow}(B) \cup \text{First}(\beta)$

 if (β derives ε) $\text{Follow}(B) = \text{Follow}(B) \cup \text{Follow}(A)$

for all productions $A \rightarrow \alpha B$

 $\text{Follow}(B) = \text{Follow}(B) \cup \text{Follow}(A)$
Augmenting Example with Follow

- Example Grammar for Follow

\[S \rightarrow X \$
\[X \rightarrow a
\[X \rightarrow a \ b
\]

Follow(\(S \)) = \{ \$, \}

Follow(\(X \)) = \{ \$, \}
SLR Eliminates Shift/Reduce Conflict

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>s0</td>
<td>a shift to s1, b error, $ error</td>
<td>goto s3</td>
</tr>
<tr>
<td>s1</td>
<td>reduce(2) shift to s2, reduce(2)</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>reduce(3), reduce(3), reduce(3)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>error, error, accept</td>
<td></td>
</tr>
</tbody>
</table>

S → • X $
X → • a
X → • a b

s0

s1

s2

s3

X → a b •

b \notin \text{Follow}(X)
Basic Idea Behind LR(1)

- Split states in LR(0) DFA based on lookahead
- Reduce based on item and lookahead
LR(1) Items

- Items will keep info on
 - production
 - right-hand-side position (the dot)
 - look ahead symbol
- LR(1) item is of the form \([A \rightarrow \alpha \cdot \beta \ T]\)
 - \(A \rightarrow \alpha \beta\) is a production
 - The dot in \(A \rightarrow \alpha \cdot \beta\) denotes the position
 - \(T\) is a terminal or the end marker ($$\$$)
Meaning of LR(1) Items

- Item \([A \rightarrow \alpha \cdot \beta \cdot T]\) means
 - The parser has parsed an \(\alpha\)
 - If it parses a \(\beta\) and the next symbol is \(T\)
 - Then parser should reduce by \(A \rightarrow \alpha \beta\)
• The grammar
 \[S \rightarrow X$ \]
 \[X \rightarrow (X) \]
 \[X \rightarrow \varepsilon \]

• Terminal symbols
 • ‘(‘ ’)’
 • ‘$’

• End of input symbol

LR(1) Items

\[[S \rightarrow \cdot X$] \]
\[[S \rightarrow \cdot X$ (] \]
\[[S \rightarrow \cdot X$ $] \]
\[[S \rightarrow X\cdot$ $] \]
\[[S \rightarrow X\cdot$ (] \]
\[[S \rightarrow X\cdot$ $] \]
\[[X \rightarrow \cdot (X)] \]
\[[X \rightarrow \cdot (X)] \]
\[[X \rightarrow \cdot (X) $] \]
\[[X \rightarrow (\cdot X)] \]
\[[X \rightarrow (\cdot X)] \]
\[[X \rightarrow (\cdot X) $] \]
\[[X \rightarrow (\cdot X) $] \]
\[[X \rightarrow (\cdot X)] \]
Creating a LR(1) Parser Engine

- Need to define Closure() and Goto() functions for LR(1) items

- Need to provide an algorithm to create the DFA

- Need to provide an algorithm to create the parse table
Closure algorithm

Closure(I)
 repeat
 for all items [A → α • X β c] in I
 for any production X → γ
 for any d ∈ First(βc)
 I = I ∪ { [X → • γ d] }
 until I does not change
Goto algorithm

Goto(I, X)

J = {} for any item [A → \alpha \cdot X \beta \ c] in I

J = J \cup \{[A → \alpha X \cdot \beta \ c]\}

return Closure(J)
Building the LR(1) DFA

• Start with the item \([S’] \rightarrow \cdot <S> \cdot \] $ I$
 • I irrelevant because we will never shift $
• Find the closure of the item and make an state
• Pick a state I
 • for each item \([A \rightarrow \alpha \cdot X \beta \cdot c] \in I$
 • find $\text{Goto}(I, X)$
 • if $\text{Goto}(I, X)$ is not already a state, make one
 • Add an edge X from state I to $\text{Goto}(I, X)$ state
• Repeat until no more additions possible
Creating the parse tables

• For each LR(1) DFA state
 • Transition to another state using a terminal symbol is a shift to that state (*shift to sn*)
 • Transition to another state using a non-terminal symbol is a goto that state (*goto sn*)
 • If there is an item \([A \rightarrow \alpha \cdot a]\) in the state, action for input symbol a is a reduction via the production \(A \rightarrow \alpha\) (*reduce k*)
LALR(1) Parser

- Motivation
 - LR(1) parse engine has a large number of states
 - Simple method to eliminate states
- If two LR(1) states are identical except for the look ahead symbol of the items
 Then Merge the states
- Result is LALR(1) DFA
- Typically has many fewer states than LR(1)
- May also have more reduce/reduce conflicts
6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.